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Abstract

Here, we derive analytical asymptotic expressions for the dynamic surface tension of ionic surfactant solutions in the general case of nonsta-
tionary interfacial expansion. Because the diffusion layer is much wider than the electric double layer, the equations contain a small parameter.
The resulting perturbation problem is singular and it is solved by means of the method of matched asymptotic expansions. The derived general
expression for the dynamic surface tension is simplified for the special case of immobile interface and for the maximum bubble pressure method
(MBPM). The case of stationary interfacial expansion is also considered. The effective diffusivity of the ionic surfactant essentially depends on
the concentrations of surfactant and nonamphiphilic salt. To test the theory, the derived equations are applied to calculate the surfactant adsorption
from MBPM experimental data. The results excellently agree with the adsorption determined independently from equilibrium surface-tension
isotherms. The derived theoretical expressions could find application for interpreting data obtained by MBPM and other experimental methods
for investigating interfacial dynamics.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In the case of ionic surfactants, the existence of a dif-
fuse electric double layer essentially influences the thermo-
dynamics and kinetics of adsorption. The process of adsorp-
tion is accompanied with a progressive increase of the surface
charge density and electric potential. The charged surface re-
pels the new-coming surfactant molecules, which results in
a deceleration of the adsorption process [1,2]. The theoreti-
cal studies on dynamics of adsorption encounter difficulties
with the nonlinear set of partial differential equations, which
describes the electro-diffusion process. The quasi-equilibrium
model developed by Dukhin et al. [3–6] employs the sim-
plifying assumption that the characteristic diffusion time is
much greater than the time of formation of the electric dou-
ble layer, and then the electro-diffusion process is modeled
as a process of mixed barrier-diffusion control. Similar ap-
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proach is followed by Borwankar and Wasan [7]. The solution
of the problem for the case of small periodic surface pertur-
bations, like those observed with the oscillating bubble tech-
nique [8,9], was obtained by Bonfillon and Langevin [10];
the results were applied to interpret data obtained by means
of the longitudinal-wave method for adsorption monolayers of
ionic surfactant. McLeod and Radke [11] obtained numerical
solutions of the electro-diffusion problem, thus avoiding the
simplifying assumptions of the quasi-equilibrium model. Such
numerical solutions are mathematically rigorous, but they are
time-consuming when applied to process experimental data.
The analysis in Ref. [11] was extended by Datwani and Stebe
[12] in the electrostatic limit. Their model considers the cases
of diffusion control and adsorption–desorption kinetic barri-
ers [12].

Analytical theories of the relaxation of surface tension of
a quiescent interface have been proposed for the cases of no
added electrolyte [13], small [14], and large [15] deviations
from equilibrium. Ferri et al. [16] analyzed the effect of in-
terfacial curvature on the adsorption at the surface of pendant
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bubbles and compared numerical solutions, asymptotic expres-
sions and experimental data. The adsorption dynamics in the
case of stationary expansion of a fluid interface has been also
investigated [17]. In some of these studies [13,14,17], the ad-
sorption (binding) of counterions at the conversely charged
surfactant headgroups in the adsorption layer was taken into
account. The bound counterions affect strongly the adsorption
kinetics insofar as up to 70–90% of the surface electric charge
could be neutralized by them [18–20]. Thus, it turns out that in
the case of ionic surfactants (with or without added salt) there
are two adsorbing species: the surfactant ions and the counter-
ions.

In the simpler case of nonionic surfactants, and for a surface,
which had been initially disturbed and after that it was immo-
bile during the whole process of surfactant adsorption, Hansen
[21] derived the following expression for the time dependence
of the subsurface surfactant concentration, c1s(t):

(1.1)c1s = c1∞ − Γ1,eq − Γ 0
1

(πD1t)1/2
,

where t is time; c1∞ is the bulk surfactant concentration; Γ 0
1

and Γ1,eq are, respectively, the initial and equilibrium surfac-
tant adsorptions; D1 is the diffusion coefficient of the surfactant
molecules. Equation (1.1) is applicable for surfactant concen-
trations lower than the critical micelle concentration (CMC).
The validity of the Hansen asymptotic formula, Eq. (1.1), was
confirmed in [22,23]. For small deviations from equilibrium,
one could use the Gibbs adsorption equation:

(1.2)γ − γeq = −kT Γ1,eq
c1s − c1∞

c1∞
,

where γeq is the equilibrium surface tension; k is the Boltz-
mann constant, and T is the absolute temperature. Combining
Eqs. (1.1) and (1.2), we obtain

(1.3)γ = γeq + sγ,0

t1/2
,

(1.4)sγ,0 ≡ kT Γ 2
1,eq

(πD1)1/2c1∞
.

sγ,0 is the slope parameter for an immobile interface; at the last
step we have used the assumption Γ0 � Γeq.

Here, our aim is to generalize Eqs. (1.3) and (1.4) in two
respects: (i) for ionic surfactants in the presence or absence
of added electrolyte, and (ii) for an expanding fluid inter-
face, like that realized with the maximum bubble pressure
method (MBPM) [24–26], expanding drop method [27–29],
the strip method [30,31], and the overflowing cylinder method
[17,32–35]. (The γ (t) dependence for immobile interfaces can
be deduced as a special case.) In particular, we will show that
in the case of MBPM, the generalization of Eqs. (1.3) and (1.4)
reads:

(1.5)γ = γeq + sγ

(tage)1/2
,

(1.6)sγ ≡ kT Γ 2
1,eqλ

(πDeff)1/2γ±

(
1

c1∞
+ 1

c2∞

)
,

where tage is the bubble surface age, i.e., the period of time
between the minimum pressure (at bubble formation) and the
maximum pressure (before bubble detachment); λ is a dimen-
sionless constant of the MBPM apparatus that can be deter-
mined in calibration experiments [36]; c2∞ is the bulk concen-
tration of counterions; γ± is the activity coefficient; Deff is an
effective diffusivity that depends on the concentrations of sur-
factant and salt, and is defined by Eqs. (6.16)–(6.23) below. It
is established that Eqs. (1.5) and (1.6) provide exact quantita-
tive interpretation of MBPM experimental data; see Section 8
for details.

The paper is structured as follows. In Sections 2 and 3 we
formulate the basic equations, introduce appropriate dimen-
sionless variables. In Sections 4 and 5 we consider the two
asymptotic regions: the relatively narrow electric double layer
near the interface and the much wider diffusion layer. In Sec-
tions 6 and 7 we derive and discuss the expressions for the
dynamic surface tension in the cases of nonstationary and sta-
tionary interfacial expansion. Finally, in Section 8 we test the
derived theoretical expressions by comparison with experimen-
tal data obtained by means of the maximum bubble pressure
method.

2. Formulation of the diffusion problem

We consider adsorption from the solution of an ionic surfac-
tant in the presence of added nonamphiphilic electrolyte (salt).
For simplicity, we assume that the counterions due to the sur-
factant and salt are the same. Thus, the solution contains three
components, which will be denoted as follows: 1—surfactant
ions; 2—counterions, and 3—coions. For example, in Section 8
we consider solutions of sodium dodecyl sulfate (SDS) + added
NaCl, for which component 1 is DS−, component 2 is Na+, and
component 3 is Cl−. Because of the electroneutrality of the so-
lution, the bulk concentrations of the three ionic species, c1∞,
c2∞, and c3∞, are related:

(2.1)c2∞ = c1∞ + c3∞.

Furthermore, we assume that the valence of the surfactant ions
and coions is Z, while the valence of the counterions is −Z.
Because of the adsorption of charged surfactant molecules,
an electric double layer appears near the surface of the so-
lution [37]. The electric potential of the double layer will be
denoted by ψ . It is convenient to introduce the dimensionless
electric potential, Φ = Zeψ/(kT ), where e is the electronic
charge; because Z and ψ have the same sign, we have Φ � 0.

Let us consider a flat interface that is subjected to dilatation
with expansion rate:

(2.2)α̇(t) ≡ 1

A

dA

dt
.

Here, t is time and A(t) is the interfacial area. Let x be coor-
dinate normal to the interface and x = 0 at the interface, see
Fig. 1. Because of the adsorption process, the concentrations
of the ionic species and the electric potential are functions of
the spatial coordinate and time: c1(x, t), c2(x, t), c3(x, t), and
Φ(x, t). The latter four functions can be determined from the
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Fig. 1. Sketch of the interfacial zone of an ionic surfactant solution. Both surfac-
tant ions and counterions adsorb, while the coions do not adsorb at the interface.
In the “inner” region, an electric double layer of non-zero bulk charge density
is developed. In the “outer” region, the bulk charge density is zero, but in spite
of that the ionic concentrations vary during the adsorption process. The plane
x = b is located in the transitional zone between the inner and outer regions.

three equations of convective diffusion and the Poisson equa-
tion [13–15]:

(2.3)
∂c1

∂t
− α̇x

∂c1

∂x
= D1

∂

∂x

(
∂c1

∂x
+ c1

∂Φ

∂x

)
,

(2.4)
∂c2

∂t
− α̇x

∂c2

∂x
= D2

∂

∂x

(
∂c2

∂x
− c2

∂Φ

∂x

)
,

(2.5)
∂c3

∂t
− α̇x

∂c3

∂x
= D3

∂

∂x

(
∂c3

∂x
+ c3

∂Φ

∂x

)
,

(2.6)
∂2Φ

∂x2
= κ2

2c2∞
(c2 − c1 − c3)

(x > 0 and t > 0). Here, D1, D2, and D3 are the bulk diffu-
sion coefficient of the respective ions; κ is the Debye screening
parameter:

(2.7)κ2 = 8πZ2e2c2∞
εkT

.

The convective terms in Eqs. (2.3)–(2.5) are written in the
framework of the approximation by van Voorst Vader et al. [38],
viz. v · ∇ci = −α̇x(∂ci/∂x), where v is the velocity.

At large distances from the surface, the electric potential is
zero and the concentrations of the three ionic components are
equal to c1∞, c2∞, and c3∞. The adsorptions of these com-
ponents at the interface will be denoted by Γ1, Γ2, and Γ3,
respectively. As a rule, the coions do not adsorb [20], and then
Γ3 = 0. The mass balance equations at the interface (x = 0)

read [13–15]:

(2.8)
dΓ1

dt
+ α̇Γ1 = D1

(
∂c1

∂x
+ c1

∂Φ

∂x

)
x=0

,

(2.9)
dΓ2

dt
+ α̇Γ2 = D2

(
∂c2

∂x
− c2

∂Φ

∂x

)
x=0

,

(2.10)0 =
(

∂c3

∂x
+ c3

∂Φ

∂x

)
x=0
(Γ3 = 0). The boundary condition for the normal component of
the electric field intensity at the interface [39] can be presented
in the form:

(2.11)
∂Φ

∂x

∣∣∣∣
x=0

= − κ2

2c2∞
(Γ1 − Γ2).

The considered equations satisfy the electroneutrality condi-
tion, which states that the sum of the net surface charge and
the bulk excess charge must be equal to zero. Indeed, by inte-
gration of the Poisson equation, Eq. (2.6), along with Eqs. (2.1)
and (2.11), we obtain

(2.12)Γ1 − Γ2 = Λ2 − Λ1 − Λ3,

(2.13)Λi ≡
∞∫

0

(ci − ci∞)dx, i = 1,2,3.

Equation (2.12) can be presented in the alternative form [20,40,
41]:

(2.14)Γ̃2 = Γ̃1 + Γ̃3,

where

(2.15)Γ̃i ≡ Γi + Λi, i = 1,2,3,

is the ‘total’ adsorption, which includes both the ions adsorbed
at the interface (Γi) and the excess ions in the diffuse electric
double layer (Λi). (In our case Γ3 = 0.) The computations [20]
show that for not too low ionic strengths, Z2c2∞ � 1 mM, the
diffuse electric double layer is relatively narrow, and then Λ1 is
negligible, so that Γ̃1 ≈ Γ1.

3. Two length scales and small parameter

Two different length scales characterize the considered sys-
tem. The first one is determined by the Debye length, κ−1, char-
acterizing the thickness of the electric double layer. The second
length scale, Ld, characterizes the thickness of the layer in
which diffusion takes place: Ld = (D1tage)

1/2, where tage is the
characteristic surface age. As mentioned above, for the maxi-
mum bubble pressure method, tage is the period of time between
the moments of minimum pressure (bubble formation) and
maximum pressure (before the bubble detachment). For typi-
cal parameter values, tage = 1 ms and D1 = 5.5 × 10−10 m2/s,
we estimate Ld = 742 nm. On the other hand, at ionic strength
c2∞ = 1 mM, we calculate κ−1 = 9.6 nm. Thus, it turns out that
the ratio of the two length scales represents a small parameter:

(3.1)δ = κ−1

Ld
� 1.

Let us introduce dimensionless coordinate, x̃, and time, t̃ , as
follows:

(3.2)x̃ = x/Ld, t̃ = t/tage.

In terms of these dimensionless variables, Eqs. (2.3)–(2.6) ac-
quire the form:

(3.3)
∂c1

˜ − x̃
∂c1 dα

˜ = ∂
(

∂c1 + c1
∂Φ

)
,

∂t ∂x̃ dt ∂x̃ ∂x̃ ∂x̃
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(3.4)
∂c2

∂t̃
− x̃

∂c2

∂x̃

dα

dt̃
= D2

D1

∂

∂x̃

(
∂c2

∂x̃
− c2

∂Φ

∂x̃

)
,

(3.5)
∂c3

∂t̃
− x̃

∂c3

∂x̃

dα

dt̃
= D3

D1

∂

∂x̃

(
∂c3

∂x̃
+ c3

∂Φ

∂x̃

)
,

(3.6)δ2 ∂2Φ

∂x̃2
= c2 − c1 − c3

2c2∞
(x̃ > 0 and t̃ > 0). Here, in view of Eq. (2.2), we have used
the notation α = lnA. Because a small parameter, δ2, appears
before the second derivative in Eq. (3.6), we are dealing with a
singular perturbation problem [42–44].

Introducing the dimensionless variables, Eq. (3.2), into the
boundary conditions, Eqs. (2.8)–(2.10), we obtain:

(3.7)
dΓ1

dt̃
+ Γ1

dα

dt̃
= Ld

(
∂c1

∂x̃
+ c1

∂Φ

∂x̃

)
x̃=0

,

(3.8)
dΓ2

dt̃
+ Γ2

dα

dt̃
= Ld

D2

D1

(
∂c2

∂x̃
− c2

∂Φ

∂x̃

)
x̃=0

,

(3.9)

(
∂c3

∂x̃
+ c3

∂Φ

∂x̃

)
x̃=0

= 0.

The small parameter, δ, does not appear in the boundary condi-
tions (3.7)–(3.9).

Because we are dealing with a singular perturbation method,
we could find a solution of the problem by means of the method
of matched asymptotic expansions [42–44]. For this goal, we
will consider an inner region of characteristic thickness κ−1

representing the electric double layer, and an outer region
of characteristic thickness Ld where diffusion transport takes
place (Fig. 1). We will find the leading terms of the asymp-
totic solutions in the two regions and will match them by using
the approach of Prandtl for matching of the leading terms in
the outer and inner asymptotic expansions [44]. The approach
used in the present paper is similar to that applied in Ref. [17].
The difference is that here we consider mostly nonstationary
processes and that the object of our theoretical survey is not
only the adsorption, but also the interfacial tension, γ , and the
effective diffusivity, Deff; see below.

The equations in the present paper are formulated for a pla-
nar interface. They can be applied also to curved interfaces
when the characteristic thickness of the diffusion layer is much
smaller than the interfacial curvature radius, Ld � R. In the
typical MBPM experiments, R � 100–150 µm [36], so that the
latter relation is satisfied. As established by Ferri et al. [16],
the curvature effects could become important at early times for
dilute solutions. The analysis of the curvature effects at an ex-
panding interface could be a subject of a subsequent study.

4. The diffusion problem in the inner region

Following the method of matched asymptotic expansions
[42–44], we have to “expand” the spatial coordinate in the inner
region by introducing a new coordinate:

(4.1)x̃in = x̃/δ.

In terms of the new variable, Eqs. (3.3)–(3.5) acquire the form:

(4.2)δ2
(

∂c1

˜ − x̃in
∂c1 dα

˜
)

= ∂
(

∂c1 + c1
∂Φ

)
,

∂t ∂x̃in dt ∂x̃in ∂x̃in ∂x̃in
(4.3)δ2
(

∂c2

∂t̃
− x̃in

∂c2

∂x̃in

dα

dt̃

)
= D2

D1

∂

∂x̃in

(
∂c2

∂x̃in
− c2

∂Φ

∂x̃in

)
,

(4.4)δ2
(

∂c3

∂t̃
− x̃in

∂c3

∂x̃in

dα

dt̃

)
= D3

D1

∂

∂x̃in

(
∂c3

∂x̃in
+ c3

∂Φ

∂x̃in

)

(x̃in > 0 and t̃ > 0). Because δ is a small parameter, the lead-
ing order solution of Eqs. (4.2)–(4.4) represents a steady-state
Boltzmann distribution:

c2 = c2b exp(Φ − Φb), ci = cib exp
[−(Φ − Φb)

]
,

(4.5)i = 1,3.

Here, c1b, c2b, c3b, and Φb, are the values of the concentrations
and the electric potential at the outer boundary of the inner re-
gion, i.e. at x̃in � 1. The values of the latter four parameters
have to be determined by matching with the solution in the outer
region. From Eq. (3.6), it follows that in leading-order approx-
imation, in the outer region we have:

(4.6)c2b = c1b + c3b,

i.e., at its outer boundary the inner region (the electric dou-
ble layer) is bordered by an electroneutral solution, as it could
be expected. Substituting Eqs. (4.1) and (4.5) into the Poisson
equation (3.6), we obtain

(4.7)
∂2

∂x̃2
in

(Φ − Φb) = c2b

c2∞
sinh(Φ − Φb).

The solution of Eq. (4.7) is

(4.8)tanh

(
Φ − Φb

4

)
= tanh

(
Φs − Φb

4

)
exp(−κbx).

Here, Φs = Φs(t) is the surface electric potential (at x = 0,
Fig. 1), and κb is the Debye parameter in terms of c2b, that
is κ2

b = κ2c2b/c2∞. The form of Eq. (4.8) is analogous to the
known expression for the distribution of the electric potential in
an equilibrium electric double layer [37].

Equations (4.5)–(4.7) show that the leading term of the as-
ymptotics in the inner region describes a quasistatic electric
double layer, which exists in equilibrium with the outer region.
Our next task is to determine the parameters c1b, c2b, and c3b.

5. The diffusion problem in the outer region

In the outer region, in leading-order approximation the Pois-
son equation (3.6) yields:

(5.1)c2 = c1 + c3

(δ � 1). Equation (5.1) means that the solution is electroneutral
everywhere in the outer region. In particular, Eq. (4.6) repre-
sents a limiting form of Eq. (5.1) for the inner boundary of the
outer region. In view of Eq. (5.1), we sum up Eqs. (3.3) and
(3.5) and subtract Eq. (3.4). The result reads:

∂

∂x̃

{
(D1 − D2)

∂c1

∂x̃
+ (D3 − D2)

∂c3

∂x̃

(5.2)+ [
(D1 + D2)c1 + (D3 + D2)c3

]∂Φ

∂x̃

}
= 0.
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Integrating Eq. (5.2), we obtain

(5.3)
∂Φ

∂x̃
= D2 − D1

D21c1 + D23c3

∂c1

∂x̃
+ D2 − D3

D21c1 + D23c3

∂c3

∂x̃
,

(5.4)Dij = Di + Dj, i, j = 1,2,3.

The integration constant in Eq. (5.3) is zero because all deriva-
tives in this equation tend to zero at x̃ → ∞. Because the con-
centrations in the outer region are not uniform, c1 = c1(x̃, t̃),
c3 = c3(x̃, t̃), Eq. (5.3) leads to the nontrivial conclusion that
the electric potential, Φ = Φ(x̃, t̃), is not zero in the outer re-
gion, despite the electroneutrality of the solution; see Eq. (5.1).
The substitution of Eq. (5.3) into Eqs. (3.3) and (3.5) gives:

(5.5)
∂c1

∂t̃
− x̃

∂c1

∂x̃

dα

dt̃
= ∂

∂x̃

(
f11

∂c1

∂x̃
+ f13

∂c3

∂x̃

)
,

(5.6)
∂c3

∂t̃
− x̃

∂c3

∂x̃

dα

dt̃
= D3

D1

∂

∂x̃

(
f31

∂c1

∂x̃
+ f33

∂c3

∂x̃

)

(x̃ > 0 and t̃ > 0), where

(5.7)f11(c1, c3) = 2D2c1 + D23c3

D21c1 + D23c3
,

(5.8)f13(c1, c3) = (D2 − D3)c1

D21c1 + D23c3
,

(5.9)f31(c1, c3) = (D2 − D1)c3

D21c1 + D23c3
,

(5.10)f33(c1, c3) = D21c1 + 2D2c3

D21c1 + D23c3
.

Thus, the problem is reduced to determining c1 and c3 from
Eqs. (5.5) and (5.6). Next, c2 and Φ can be found from Eqs.
(5.1) and (5.3).

To solve the problem, we need also initial and boundary
conditions. Because at the initial moment only the interface is
disturbed, the initial conditions in the outer region are:

(5.11)ci(x̃,0) = ci∞, i = 1,2,3.

In comparison with the length scale in the outer region, the
inner region (the electric double layer) is very narrow, and in
first-order approximation it can be treated as a two-dimensional
continuum. This viewpoint is equivalent to the thermodynamic
approach of Gibbs [45,46], where the solution is considered as
a uniform phase (in our case—electroneutral phase), and the ex-
cesses of all components in the subsurface zone are ascribed to
the interface as adsorptions, Γ̃i , i = 1,2,3. We recall that the
‘total’ adsorptions Γ̃i include contributions from both the ad-
sorption layer and diffuse electric double layer; see Eq. (2.15)
and Fig 1. The only difference with the equilibrium case is that
in Eq. (2.13) ci∞ has to be replaced by cib; see Appendix A for
details. Thus, the inner boundary conditions for the outer region
are analogous to Eqs. (2.8)–(2.10), with the only difference that
Γi is replaced by Γ̃i :

(5.12)
dΓ̃1

dt̃
+ Γ̃1

dα

dt̃
= Ld

(
∂c1

∂x̃
+ c1

∂Φ

∂x̃

)
x̃=0

,

(5.13)
dΓ̃2

˜ + Γ̃2
dα

˜ = Ld
D2

D

(
∂c2

∂x̃
− c2

∂Φ

∂x̃

)
,

dt dt 1 x̃=0
(5.14)
dΓ̃3

dt̃
+ Γ̃3

dα

dt̃
= Ld

D3

D1

(
∂c3

∂x̃
+ c3

∂Φ

∂x̃

)
x̃=0

(in our case, Γ3 = 0 and Γ̃3 = Λ3). The derivation of Eqs.
(5.12)–(5.14) from Eqs. (2.3)–(2.5) and (2.8)–(2.10) is given in
Appendix A. It should be noted that Eqs. (5.12)–(5.14) are com-
patible with the condition for electroneutrality of the electric
double layer, Γ̃2 = Γ̃1 + Γ̃3. Indeed, if we sum up Eqs. (5.12)
and (5.14), and subtract Eq. (5.13), with the help of Eqs. (2.14)
and (5.3) we obtain an identity. Therefore, among the three con-
sidered boundary conditions there are only two independent.
We choose Eqs. (5.12) and (5.14) as independent boundary
conditions. In view of Eqs. (5.3) and (5.7)–(5.10), they can be
transformed to read:

(5.15)
dΓ̃1

dt
+ Γ̃1

dα

dt
= D1

(
f11

∂c1

∂x
+ f13

∂c3

∂x

)
x=0

,

(5.16)
dΓ̃3

dt
+ Γ̃3

dα

dt
= D3

(
f31

∂c1

∂x
+ f33

∂c3

∂x

)
x=0

.

In Eqs. (5.15) and (5.16) we have introduced the dimensional
variables (x, t), in accordance with Eq. (3.2). The initial values
of Γ̃1 and Γ̃3 (at t = 0), are supposed to be known:

(5.17)Γ̃1(0) = Γ̃ 0
1 , Γ̃3(0) = Γ̃ 0

3 .

Our next task is to solve the diffusion equations (5.5) and (5.6),
along with initial and boundary conditions given by Eqs. (5.11)
and (5.15)–(5.17).

To determine the time dependence of the surface tension, γ ,
we will use the Gibbs adsorption equation in the form [20]:

(5.18)− dγ

kT
= Γ̃1d ln c1b + Γ̃2d ln c2b + Γ̃3d ln c3b.

Here, we have taken into account the fact that if the adsorptions
are expressed in terms of Γ̃i (i.e., if they include the diffuse
electric double layer) the subsurface concentrations have to be
expressed in terms of cib. In Eq. (5.18), cib, i = 1,2,3, rep-
resent concentrations at the outer limit of the quasistatic inner
region, which must coincide with the concentrations at the in-
ner limit of the outer region, in accordance with the Prandtl
matching procedure [42–44]. As indicated by the calculations
of the adsorptions of ionic surfactants [20,47], as a rule we have
Γ̃3 � Γ̃1, Γ̃2. The neglecting of Γ̃3 in Eq. (2.14) yields Γ̃2 ≈ Γ̃1,
and then Eq. (5.18) reduces to

(5.19)− dγ

kT
= Γ̃1

(
dc1b

c1b
+ dc2b

c2b

)
.

Our next goal is to determine c1b(t) and c2b(t), whose substitu-
tion in Eq. (5.19) would give us the dependence γ (t).

6. Solution of the nonstationary diffusion problem

6.1. Basic equations

In general, we consider the case, in which the interfacial area
is a function of time, A(t), see Eq. (2.2). To remove the convec-
tive terms in Eqs. (5.5) and (5.6), we replace the coordinates
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(x, t) with the new variables (y, τ ) defined as follows [48]:

(6.1)y = A

A0
x and τ = t−1

age

t∫
0

A2(t̂ )

A2
0

dt̂ ,

where A0 = A(0) and t̂ is an integration variable. In terms of
the new variables (y, τ ), Eqs. (5.5) and (5.6) acquire the form:

(6.2)
1

tage

∂c1

∂τ
= D1

∂

∂y

(
f11

∂c1

∂y
+ f13

∂c3

∂y

)
,

(6.3)
1

tage

∂c3

∂τ
= D3

∂

∂y

(
f31

∂c1

∂y
+ f33

∂c3

∂y

)

(y > 0 and τ > 0). We have used also Eq. (3.2) and the defini-
tion Ld = (D1tage)

1/2. In terms of the new variables (y, τ ), the
boundary conditions, Eqs. (5.15) and (5.16) reduce to

(6.4)
1

tage

d

dτ

(
Γ̃1

A

A0

)
= D1

(
f11

∂c1

∂y
+ f13

∂c3

∂y

)
y=0

,

(6.5)0 =
(

f31
∂c1

∂y
+ f33

∂c3

∂y

)
y=0

.

At the last step we used the approximation Γ̃3 ≈ 0.
The deviations of the concentrations from their bulk values

are:

(6.6)�c1 = c1 − c1∞, �c3 = c3 − c3∞.

The boundary problem (6.2)–(6.5) is nonlinear and it cannot be
solved analytically. However, analytical solution can be found
in the special case when �c1 and �c2 are small. In this case, the
coefficients fij in Eqs. (6.2)–(6.5) could be treated as constant,
and the problem can be solved by Laplace transformation with
respect to τ . The Laplace transforms of Eqs. (6.2)–(6.5) are:

(6.7)
s

tage
L[�c1] = a11

d2L[�c1]
dy2

+ a13
d2L[�c3]

dy2
,

(6.8)
s

tage
L[�c3] = a31

d2L[�c1]
dy2

+ a33
d2L[�c3]

dy2
,

(6.9)

1

tage
L

[
d

dτ

(
Γ̃1

A

A0

)]
=

{
a11

dL[�c1]
dy

+ a13
dL[�c3]

dy

}
y=0

,

(6.10)0 =
{
a31

dL[�c1]
dy

+ a33
dL[�c3]

dy

}
y=0

,

where L denotes Laplace transformation, s is the Laplace para-
meter, and the coefficients aij are defined as follows:

(6.11)aij = Difij (c1∞, c3∞), i, j = 1,3,

see Eqs. (5.7)–(5.10). For small deviations from equilibrium,
Eq. (5.19) acquires the form:

(6.12)− dγ

kT
= Γ̃1,eq

(
d�c1b

c1∞
+ d�c2b

c2∞

)
,

where Γ̃1,eq is the equilibrium value of Γ̃1, and

(6.13)�cib = �ci |y=0, i = 1,2,3.
Integrating Eq. (6.12), we obtain

(6.14)γ = γeq − Γ̃1,eqkT

(
�c1b

c1∞
+ �c1b + �c3b

c2∞

)
,

where we have used Eqs. (2.1), (4.6), and (6.6).

6.2. Dynamic surface tension and effective diffusivity

In Appendix B, Eqs. (6.7) and (6.8) are solved by using
the boundary conditions, Eqs. (6.9) and (6.10), and the func-
tions L[�ci], i = 1,3, are determined. Next, with the help of
Eqs. (6.13) and (6.14), we derive the following expression for
the time dependence of the surface tension:

γ = γeq + Γ̃ 2
1,eqkT

(πDefftage)1/2

(
1

c1∞
+ 1

c2∞

)

(6.15)×
(

Γ̃1,eq − Γ̃ 0
1

τ 1/2Γ̃1,eq
+

τ∫
0

1

(τ − τ̃ )1/2

d

dτ̃

(
A

A0

)
dτ̃

)
,

where τ is given by Eq. (6.1), and Deff is an effective diffusion
coefficient of the ionic surfactant defined as follows:

(6.16)Deff = (a11 + a33 + 2a1/2)q2,

where

(6.17)q = (c1∞ + c2∞)a1/2

(a33 − a31 + a1/2)c1∞ + (a33 + a1/2)c2∞
,

(6.18)a = a11a33 − a13a31 = 2c2∞
B

D1D2D3,

(6.19)B = D1c1∞ + D2c2∞ + D3c3∞
(details in Appendix B). In view of Eqs. (5.4), (5.7)–(5.10), and
(6.11), the explicit expressions for the coefficients aij are:

(6.20)a11 = D1 + D2 − D1

B
D1c1∞,

(6.21)a13 = D2 − D3

B
D1c1∞,

(6.22)a31 = D2 − D1

B
D3c3∞,

(6.23)a33 = D3 + D2 − D3

B
D3c3∞.

In the special case of high salt concentration or low surfac-
tant concentration, c1∞/c3∞ � 1, we have

a11 ≈ D1, a13 ≈ 0, a ≈ D1a33,

(6.24)q2 ≈ D1

(a
1/2
33 + D

1/2
1 )2

.

Substituting Eq. (6.24) into Eq. (6.16) we obtain

(6.25)Deff ≈ D1, c1∞/c3∞ � 1.

In the absence of nonamphiphilic electrolyte (c3∞ = 0), we
have

a11 = 2D1D2
, a31 = 0, a = a11a33,
D1 + D2



62 K.D. Danov et al. / Journal of Colloid and Interface Science 303 (2006) 56–68
(6.26)q2 = a11

(a
1/2
11 + a

1/2
33 )2

.

Substituting Eq. (6.26) into Eq. (6.16), we derive

(6.27)
1

Deff
= 1

2

(
1

D1
+ 1

D2

)
, c3∞ = 0.

Equation (6.27) coincides with the results in Refs. [13,49] for
the effective diffusivity of an ionic surfactant in the absence of
added nonamphiphilic electrolyte.

In the general case, one has to calculate Deff from Eq. (6.16),
along with Eqs. (6.17)–(6.23). The latter equations are ap-
plicable for concentrations below the CMC. For concentrations
above the CMC, one could use expressions for Deff derived in
Refs. [50,51]. What concerns the expression for the surface ten-
sion, Eq. (6.15), it could be simplified for some special dynamic
regimes, as demonstrated below.

6.3. Special dynamic regimes

6.3.1. Relaxation of the surface tension of an immobile
interface

This dynamic regime is realized by the fast-formed-drop
method [52,53] and the inclined plate method [31,54,55]. The
interface is disturbed only in the initial moment, t = 0. Af-
ter that the surfactant adsorbs at an immobile interface, i.e.,
A = A0 = const and α̇ = 0. In this case, the last integral term
in Eq. (6.15) is zero, and Eq. (6.1) yields τ = t/tage. Thus,
Eq. (6.15) reduces to

(6.28)γ ≈ γeq + kT (Γ̃1,eq − Γ̃ 0
1 )Γ̃1,eq

(πDefft)1/2

(
1

c1∞
+ 1

c2∞

)
.

Then, for 1/c2∞ → 0 (nonionic surfactant or ionic surfac-
tant at high concentration of added salt) and for Γ̃ 0

1 � Γ̃1,eq,
Eq. (6.28) coincides with Eqs. (1.3) and (1.4). Note that in
the latter case Deff ≈ D1, see Eq. (6.25). In the general case
of arbitrary salt concentration, Eq. (6.28), with Deff given by
Eqs. (6.16)–(6.23), represents a generalization of Eqs. (1.3) and
(1.4). At the higher ionic strengths (c2∞ > 1 mM), we have
Γ̃1,eq ≈ Γ1,eq, and in addition, in Eq. (6.28) ci∞ should be re-
placed by γ±ci∞, i = 1,2; see Eqs. (1.6) and (8.3).

6.3.2. Maximum bubble pressure method (MBPM)
In this case, the surface tension is registered at the moment

of maximum pressure. Then, in Eq. (6.15) we have to substitute
t = tage, which leads to

γ = γeq + Γ̃1,eqkT

(πDefftage)1/2

(
1

c1∞
+ 1

c2∞

)

(6.29)× [(
Γ̃1,eq − Γ̃ 0

1

)
λ1 + Γ̃1,eqλ

]
,

where

(6.30)λ1 ≡ τ
−1/2
1 , τ1 ≡

1∫ [
Ã

(
t̂d

)]2 dt̂d,
0

(6.31)

λ ≡
1∫

0

1

(τ1 − τ)1/2

d

dtd

[
Ã(td)

]
dtd, τ ≡

td∫
0

[
Ã

(
t̂d

)]2 dt̂d.

Here, Ã = A/A0 is the dimensionless area, and td = t/tage is
the dimensionless time; t̂d is an integration variable. The exper-
iment shows that for a given MBPM setup, Ã(td) is a univer-
sal function (apparatus function), which is independent of the
surfactant type and concentration, and of the bubbling period
[25,36]. Consequently, λ and λ1 are constants that characterize
a given MBPM tensiometer (apparatus constants).

For commercially available MBPM tensiometers (like Krüss
BP2) the following relationship is satisfied [36]:

(6.32)
Γ̃1,eq − Γ̃ 0

1

Γ̃1,eq

λ1

λ
� 1.

Then, the term with λ1 in Eq. (6.29) is negligible and we obtain
Eqs. (1.5) and (1.6). In the latter equations, we have introduced
also the activity coefficient, γ±, which should be taken into ac-
count for ionic strengths greater than 1 mM, see Eq. (8.3). Note
that the replacement of the concentrations, ci∞, with the ac-
tivities, γ±ci∞, in Eqs. (6.17)–(6.23) does not change Deff be-
cause γ±, which appears in both the numerators and denomina-
tors of these equations, cancels. In addition, for ionic strengths
>1 mM, we have Γ̃1,eq ≈ Γ1,eq. In Section 8, Eqs. (1.5) and
(1.6) are used to test the derived theoretical expressions against
MBPM experimental data.

The comparison of Eqs. (1.5) and (1.6) with Eq. (6.28) in-
dicates that the dynamic surface tension detected by MBPM
becomes identical with the dynamic surface tension of an im-
mobile interface of age tu ≡ tage/λ

2 that has been initially clean
(Γ 0

1 = 0). Consequently, the dynamic surface tensions mea-
sured by different MBPM tensiometers (with different appara-
tus constants, λ) become physically comparable if the exper-
imental data are plotted as γ vs tu. In other words, the γ (tu)

curves measured for the same solution by different MBPB ap-
paratuses must coincide. This fact can be utilized for introduc-
tion of a universal time-scale for the MBPM tensiometers; see
Ref. [36] for details.

7. Stationary interfacial expansion

In the case of stationary expansion (α̇ = const), expression
for the dynamic surface tension, γ , cannot be deduced as a
special case of Eq. (6.15). Therefore, this case is considered
separately in the present section.

Stationary expansion is experimentally realized with the
strip method [30,31], and the overflowing cylinder method
[32–35]. It could be realized also by a Langmuir trough. Be-
cause we are dealing with a stationary process, all derivatives
∂ci/∂t and dΓi/dt , i = 1,2,3, in the diffusion equations and
the respective boundary conditions are equal to zero. The char-
acteristic length of the outer region is now Ld = (D1/α̇)1/2.
After that, the analysis of the stationary problem is completely
analogous to that in Sections 3–5; see also Ref. [17]. The coun-
terparts of Eqs. (5.5), (5.6), (5.15), and (5.16), written in terms
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of dimensional variables for small deviations from equilibrium,
are:

(7.1)−α̇x
∂c1

∂x
= a11

∂2c1

∂x2
+ a13

∂2c3

∂x2
,

(7.2)−α̇x
∂c3

∂x
= a31

∂2c1

∂x2
+ a33

∂2c3

∂x2
,

(7.3)Γ̃1,eqα̇ =
(

a11
∂c1

∂x
+ a13

∂c3

∂x

)
x=0

,

(7.4)0 =
(

a31
∂c1

∂x
+ a33

∂c3

∂x

)
x=0

(Γ̃3,eq ≈ 0). The coefficients aij are defined by Eq. (6.11). In
Appendix C, the linear boundary problem (7.1)–(7.4) is solved,
expressions for �c1b and �c3b are derived, and finally Eq.
(6.14) is used to determine γ . The result is

(7.5)γ = γeq + kT Γ̃ 2
1,eq

(
πα̇

2Deff

)1/2( 1

c1∞
+ 1

c2∞

)
,

where Deff is defined by Eqs. (6.16)–(6.23). Equation (7.5) does
not contain the time, t , as it should be for a stationary process.
As discussed above, for nonionic surfactants and for ionic sur-
factants at high salt concentrations the term 1/c2∞ in Eq. (7.5)
disappears and Deff = D1. In addition, for nonionic surfactants
Γ̃1,eq = Γ1. For ionic surfactants, at ionic strengths �1 mM one
could use the approximation Γ̃1,eq ≈ Γ1, and the activity coef-
ficient, γ±, should be taken into account, see Eq. (8.3).

In summary, the expressions for the dynamic surface tension
in the cases of nonstationary and stationary interfacial expan-
sion, Eqs. (6.15) and (7.5), are different, however the expression
for the effective diffusivity, Deff, is the same; see Eqs. (6.16)–
(6.23).

In some methods with stationary interfacial expansion, like
the overflowing cylinder method, the dynamic surfactant ad-
sorption Γ1(α̇) is directly registered by ellipsometry [32] or
neutron reflection [33]. To derive an expression for Γ1(α̇), we
consider the case of small deviations of the adsorption from its
equilibrium value:

(7.6)Γ1 − Γ1,eq ≈ h1a�c1b + h2a(�c1b + �c3b),

where the identity �c2b = �c1b +�c3b has been used; h1a and
h2a are the so called adsorption lengths:

(7.7)hia ≡
(

∂Γ1

∂ci∞

)
eq

, i = 1,2.

The derivatives in Eq. (7.7) have to be calculated from the
equilibrium adsorption isotherm. With the help of Eqs. (6.16),
(B.20), (C.8), and (C.9) (see Appendices B and C), one can rep-
resent Eq. (7.6) in the form:

Γ1

Γ1,eq
≈ 1 −

(
πα̇q2

2Deff

)1/2
[(

a33

a1/2
+ 1

)
h1a

(7.8)+
(

a33 − a31

a1/2
+ 1

)
h2a

]
.

The parameters taking part in Eq. (7.8) are defined by Eqs.
(6.16)–(6.23).
8. Comparison of theory and experiment

To test the derived theoretical expressions, we will use ex-
perimental data for dynamic surface tension from Ref. [36]. The
data are obtained by means of the maximum bubble pressure
method (MBPM) for sodium dodecyl sulfate (SDS) + added 10
and 100 mM NaCl, as well as for dodecyl-trimethyl ammonium
bromide (DTAB) + added 5 and 100 mM NaBr; the tempera-
ture was T = 27 ◦C. The raw experimental data for γ (tage) are
fitted by means of the equation [36]

(8.1)γ = γeq + sγ

aγ + (tage)1/2
,

where γeq, aγ , and sγ have been determined as adjustable pa-
rameters. Using the values of sγ , determined in Ref. [36], we
calculate the equilibrium adsorption, Γ1,eq, with the help of our
Eq. (1.6)

(8.2)Γ 2
1,eq = (πDeff)

1/2c1∞c2∞γ±
(c1∞ + c2∞)kT λ

sγ .

In our computations, we used the value λ = 6.074 for the appa-
ratus constant, which was determined in [36] by numerical so-
lution of the integral in Eq. (6.31) substituting the experimental
dependence Ã(td). The activity coefficient, γ±, was calculated
from the known semiempirical formula [56]

(8.3)logγ± = − AZ2
√

I

1 + Bdi

√
I

+ bI

stemming from the Debye–Hückel theory; I = Z2c2∞ is the
ionic strength of the solution; the logarithm in Eq. (8.3) is dec-
imal; di is the diameter of the ion, A, B , and b are parameters,
which are tabulated in [56]; for our experimental conditions,
we used the values A = 0.5115 M−1/2, Bdi = 1.316 M−1/2,
and b = 0.055 M−1.

The values of the surfactant diffusivity are D1 = 5.5 ×
10−10 m2/s for SDS [57] and D1 = 5.0 × 10−10 m2/s for
DTAB [36]. The diffusivities of the Na+, Cl−, and Br− ions
were calculated from the radii of the hydrated ions [58] with
the help of the Stokes–Einstein formula substituting η =
0.852 mPa s for the viscosity of water at T = 27 ◦C. Thus, for
the system SDS + NaCl we obtain D2 = 7.18 × 10−10 m2/s
and D3 = 7.83 × 10−10 m2/s, whereas for the system DTAB
+ NaBr we have D2 = 7.83 × 10−10 m2/s and D3 = 7.18 ×
10−10 m2/s (the hydrated Cl−, and Br− ions have practically
the same size). Afterwards, Deff was calculated by means of
Eqs. (6.16)–(6.23) as a function of c1∞ and c2∞. The points in
Fig. 2 represent the values of Γ1,eq, obtained from the exper-
imental sγ and Eq. (8.2), as described above. (As mentioned
earlier, for the investigated solutions the difference between
Γ̃1,eq and Γ1,eq is of the order of 1–2%, and is negligible.)

The solid lines Γ1,eq vs c1∞ in Fig. 2 are calculated indepen-
dently from the fits of equilibrium experimental surface tension
data, γeq vs c1∞, by means of the van der Waals adsorption
model using the full system of equations in Refs. [20,47]. The
parameters of this model, K1, KSt, Γ∞, and β , determined from
the fits are tabulated in [36]. Then, we computed Γ1,eq by solv-
ing numerically the respective system of equations for various
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(a)

(b)

Fig. 2. Plot of the equilibrium surfactant adsorption, Γ1,eq, vs the surfactant
concentration, c1∞ , for various salt concentrations, c3∞ , denoted in the figure:
(a) SDS + NaCl; (b) DTAB + NaBr. The points are calculated by means of
Eq. (8.2) from the experimental sγ measured by MBPM in Ref. [36]. The solid
lines are calculated independently from fits of surface tension data, γeq vs c1∞,
by means of the van der Waals adsorption model (see the text).

c1∞; see Ref. [36]. The lines Γ1,eq (c1∞) calculated in this way
from γeq are in excellent agreement with the points, which are
obtained in a completely independent manner from the MBPM
data for sγ ; see Fig. 2. Note that the points and the lines in
Fig. 2 have been plotted directly as calculated by the two dif-
ferent procedures, and their agreement is not a result of fit. This
agreement confirms the validity of the equations derived in the
present paper: Eqs. (1.5) and (1.6) for the dynamic surface ten-
sion, γ (tage), and Eqs. (6.16)–(6.23) for the effective diffusivity
Deff(c1∞, c3∞).

Figs. 3a and 3b illustrate the dependence of Deff on the sur-
factant and salt concentrations, c1∞ and c3∞, in the range below
the CMC. The curves are calculated by means of Eqs. (6.16)–
(6.23) using the values of D1, D2, and D3 for SDS and
DTAB (see above). Because the latter equations are valid for
c1∞ � CMC, the calculated curves end at the CMC. At very
low surfactant concentrations, c1∞ → 0, in the presence of
salt (c3∞ > 0), the effective diffusivity approaches its limiting
(a)

(b)

Fig. 3. Dependence of Deff on the surfactant concentration, c1∞, for various
salt concentrations, c3∞, denoted in the figure. The curves are calculated by
means of Eqs. (6.16)–(6.23) using the values of D1, D2, and D3 for (a) SDS
and (b) DTAB (see the text). The end points of some curves correspond to the
CMC.

value for diluted solutions, Deff → D1. One sees that Deff in-
creases with the rise of c1∞, except the case without added salt
(c3∞ = 0), for which Deff is a constant given by Eq. (6.27).
On the other hand, Deff decreases with the rise of salt con-
centration, c3∞, and becomes ≈ D1 for c3∞ = 100 mM; see
Eq. (6.25). Note that the salt concentration affects the dynamic
surface tension, γ , also through Γ1,eq and through the factor
(1/c1∞ + 1/c2∞) in Eqs. (1.6) and (7.5).

In the case of MBPM, the applicability of the developed
theory is determined by the applicability of Eq. (8.1). Our ex-
periments [36] showed that Eq. (8.1) provides excellent fits of
MBPM data everywhere except for the earliest surface ages
at low surfactant concentrations. The values of sγ determined
from the fits are found to agree very well with Eq. (1.6) for
concentrations below the CMC, where this equation is valid. In
other words, despite some approximations used in the present
paper, the derived theoretical expressions are applicable to a
wide and practically important range of surfactant concentra-
tions; see Ref. [36] for details.
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9. Summary and conclusions

We derived analytical asymptotic expressions for the dy-
namic surface tension of ionic surfactant solutions in the gen-
eral case of nonstationary interfacial expansion. Because the
diffusion layer is much wider than the electric double layer, the
equations contain a small parameter; see Eq. (3.1). The result-
ing perturbation problem is singular and it is solved by means
of the method of matched asymptotic expansions. It turns out
that the “inner” region represents a quasistatic electric double
layer (Section 4), while the “outer” region is an electroneu-
tral solution (Section 5). The concentrations of the ionic species
vary in the outer region because of the diffusion process. This
leads to the nontrivial fact that the electric potential is differ-
ent from zero in the electroneutral outer region, see Eq. (5.3).
The derived general expression for the dynamic surface tension,
Eq. (6.15), is simplified for the special cases of immobile in-
terface, Eq. (6.28), and maximum-bubble-pressure tensiometry,
Eqs. (1.5) and (1.6). The case of stationary interfacial expan-
sion is also considered (Section 7). The effective diffusivity of
the ionic surfactant, Deff, which appears in the derived theo-
retical expressions, essentially depends on the concentrations
of surfactant and nonamphiphilic salt; see Eqs. (6.16)–(6.23),
and Fig. 3. To test the theory, the derived equations are ap-
plied to calculate the surfactant adsorption from MBPM ex-
perimental data. The results are compared with the adsorption
determined independently from fits of equilibrium surface ten-
sion isotherms. Excellent agreement between the two sets of
data is observed (Fig. 2), which confirms the validity of the de-
rived theoretical expressions. The results could find application
for interpretation of data obtained by MBPM and other experi-
mental methods for investigating interfacial dynamics; see, e.g.,
Ref. [36].
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Appendix A. Derivation of Eqs. (5.12)–(5.14)

Let us consider the plane x = b, which is situated in the tran-
sition zone between the outer and inner regions (κ−1 � b �
Ld). We will formally consider b as a boundary between the
two regions (Fig. 1). Next, we integrate the diffusion equations
(2.3)–(2.5) with respect to x from 0 to b, and sum up the re-
sulting expressions with the boundary conditions (2.8)–(2.10).
Thus, we obtain

(A.1)
d

dt
(Γi + Λib) + α̇(Γi + Λib) = Di

(
∂ci

∂x
+ ci

∂Φ

∂x

)
x=b

,

(A.2)Λib ≡
b∫

0

(ci − cib)dx, cib ≡ ci |x=b, i = 1,2,3.
Here, we have not used the approximation Γ3 ≈ 0; to derive
Eq. (A.1), we applied integration by parts:

(A.3)

b∫
0

x
∂ci

∂x
dx = bcib −

b∫
0

ci dx = −Λib.

Because the region 0 < x < b contains the electric double
layer, we have Λib ≈ Λi . Consequently, Γi + Λib ≈ Γ̃i , see
Eq. (2.15). Finally, in Eq. (A.1) we introduce dimensionless
variables by means of Eq. (3.2), and take into account the fact
that b̃ ≡ b/Ld � 1. As a result, we obtain Eqs. (5.12)–(5.14).

Appendix B. Derivation of Eq. (6.15)

We seek L[�c1] in the form:

(B.1)L[�c1] = X1 exp(−ν1y) + X2 exp(−ν2y),

where y � 0; X1 and X2 are unknown coefficients; ν1 and
ν2 are the two positive roots of the characteristic equation of
the system (6.7) and (6.8); see Eqs. (B.9)–(B.12). Substituting
Eq. (B.1) into Eq. (6.7), we obtain

L[�c3] =
(

s

tageν
2
1

− a11

)
X1

a13
exp(−ν1y)

(B.2)+
(

s

tageν
2
2

− a11

)
X2

a13
exp(−ν2y).

Furthermore, substituting Eqs. (B.1) and (B.2) into the bound-
ary condition, Eq. (6.10), we derive a connection between X1
and X2:

(B.3)

(
s

tageν
2
1

− a

a33

)
ν1X1 +

(
s

tageν
2
2

− a

a33

)
ν2X2 = 0,

where, as usual, a = a11a33 − a13a31; see Eq. (6.18). Next, we
transform the left-hand side of Eq. (6.9):

L

[
d

dτ

(
Γ̃1

A

A0

)]
= sL

[
Γ̃1

A

A0

]
− Γ̃ 0

1

= sL

[(
Γ̃1 − Γ̃1,eq

)
A

A0

]

+ Γ̃1,eq

(
sL

[
A

A0

]
− 1

)
+ Γ̃1,eq − Γ̃ 0

1

(B.4)≈ Γ̃1,eqL

[
d

dτ

A

A0

]
+ Γ̃1,eq − Γ̃ 0

1 .

At the last step, we neglected the term with (Γ̃1 − Γ̃1,eq)

for small deviations from equilibrium. Substituting Eqs. (B.1),
(B.2), and (B.4) into the boundary condition, Eq. (6.9), we ob-
tain

(B.5)
X1

ν1
+ X2

ν2
= − tage

s
Y,

where

(B.6)Y ≡ Γ̃1,eq

tage
L

[
d

dτ

A

A0

]
+ Γ̃1,eq − Γ̃ 0

1

tage
.
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With the help of Eq. (B.5), we represent Eq. (B.3) in the form:

(B.7)ν1X1 + ν2X2 = −a33

a
Y.

Next, from Eqs. (B.5) and (B.7) we derive

X1 = ν1

ν2
2 − ν2

1

(
a33

a
− tageν

2
2

s

)
Y,

(B.8)X2 = ν2

ν2
2 − ν2

1

(
tageν

2
1

s
− a33

a

)
Y.

To determine ν1 and ν2, we substitute L[�ci] = Ci exp(−νy),
i = 1,3, in Eqs. (6.7) and (6.8). Thus, we obtain a homogeneous
linear system for C1 and C3, and consider its characteristic
equation:

(B.9)

(
a11 − 1

μ2

)(
a33 − 1

μ2

)
− a13a31 = 0,

(B.10)
1

μ2
≡ s

tageν2
.

Equation (B.9) represents a quadratic equation for 1/μ2, whose
solution is:

(B.11)

(
1

μ2

)
1,2

= 1

2

{
(a11 + a33) ± [

(a11 + a33)
2 − 4a

]1/2}
.

After equivalent transformations, using Eqs. (6.16)–(6.23), one
can prove that(
D

(+)
21 c1∞ + D

(+)
23 c3∞

)2[
(a11 + a33)

2 − 4a
]

= [(
D1D

(−)
32 + D2D

(−)
31

)
c1∞ + (

D2D
(−)
13 + D3D

(−)
12

)
c3∞

]2

(B.12)+ 8D2
2

(
D

(−)
13

)2
c1∞c3∞ > 0,

where D
(±)
ij = Di ± Dj . In other words, the discriminant in

Eq. (B.11) is positive, and because a > 0, we have two positive
roots, μ1 and μ2. Then, the quantities νi = (s/tage)

1/2
i , i = 1,2,

are also positive; see Eq. (B.10).
In view of Eq. (6.14), we consider the expression:

(B.13)Z = −L

[
�c1b

c1∞
+ �c1b + �c3b

c2∞

]
.

Having in mind Eq. (6.13), we set y = 0 in Eqs. (B.1) and
(B.2), and substitute the result into Eq. (B.13). Thus, in view
of Eq. (B.10), we obtain

−Z =
[

1

c1∞
+ 1

c2∞

(
1

a13μ
2
1

+ a13 − a11

a13

)]
X1

(B.14)+
[

1

c1∞
+ 1

c2∞

(
1

a13μ
2
2

+ a13 − a11

a13

)]
X2.

The Viète’s formulas for Eq. (B.9) read:

(B.15)
1

μ2
1

+ 1

μ2
2

= a11 + a33,
1

μ2
1

1

μ2
2

= a.

Further, with the help of Eqs. (B.8), (B.10), and (B.15) we de-
rive

(B.16)X1 + X2 = −
(

a33 + 1
1/2

)
Q

,

a a μ1 + μ2
(B.17)
X1

μ2
1

+ X2

μ2
2

= −
(

a11

a1/2
+ 1

)
Q

μ1 + μ2
,

(B.18)Q ≡ (tage/s)
1/2Y.

Using Eqs. (B.16) and (B.17), we express Eq. (B.14) in the
form:

Z =
[

1

c1∞

(
a33

a
+ 1

a1/2

)

(B.19)+ 1

c2∞

(
a33 − a31

a
+ 1

a1/2

)]
Q

μ1 + μ2
.

Next, with the help of Eq. (B.15), we derive

(μ1 + μ2)
2 = μ2

1μ
2
2

(
1

μ2
1

+ 1

μ2
2

+ 2

μ1μ2

)

(B.20)= a11 + a33 + 2a1/2

a
.

Substituting μ1 + μ2 from Eq. (B.20) into Eq. (B.19), after
some transformations we obtain

(B.21)Z = Q

(a11 + a33 + 2a1/2)1/2

c1∞ + c2∞
c1∞c2∞q

,

where q is defined by Eq. (6.17).
Combining Eqs. (B.6), (B.18), and (B.21), we derive

(B.22)

Z = c1∞ + c2∞
c1∞c2∞

{
Γ̃1,eq

(Defftages)1/2
L

[
d

dτ

A

A0

]
+ Γ̃1,eq − Γ̃ 0

1

(Defftages)1/2

}
,

where the effective diffusion coefficient, Deff, is defined by
Eq. (6.16). Finally, we apply inverse Laplace transformation to
Eq. (B.22), and in view of Eqs. (B.13) and (6.14) we obtain
Eq. (6.15) for the dynamic surface tension.

Appendix C. Derivation of Eq. (7.5)

Substituting ∂ci/∂x = Ci exp(−μ2α̇x2/2), i = 1,3, in Eqs.
(7.1) and (7.2), we obtain a homogeneous linear system for C1
and C3, whose characteristic equation coincides with Eq. (B.9).
Consequently, Eqs. (B.11), (B.15), and (B.20), which are di-
rect corollaries from Eq. (B.9), hold also in the present case. As
proven in Appendix B, this characteristic equation has two posi-
tive roots, μ1 and μ2; see Eq. (B.12). Consequently, the general
form of ∂c1/∂x is

(C.1)
∂c1

∂x
= X1 exp

(
−μ2

1α̇
x2

2

)
+ X2 exp

(
−μ2

2α̇
x2

2

)
,

where X1 and X2 are unknown constants. Substituting Eq. (C.1)
into Eq. (7.1) and integrating, we obtain

∂c3

∂x
=

(
1

μ2
1

− a11

)
X1

a13
exp

(
−μ2

1α̇
x2

2

)

(C.2)+
(

1

μ2
2

− a11

)
X2

a13
exp

(
−μ2

2α̇
x2

2

)
.
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The substitution of Eqs. (C.1) and (C.2) into the boundary con-
ditions, Eq. (7.4), yields:

(C.3)

(
1

μ2
1

− a

a33

)
X1 +

(
1

μ2
2

− a

a33

)
X2 = 0.

Another connection between X1 and X2 can be derived by sub-
stitution of Eqs. (C.1) and (C.2) into Eq. (7.3):

(C.4)
X1

μ2
1

+ X2

μ2
2

= Γ̃1,eqα̇.

From Eqs. (C.3) and (C.4) we obtain

X1 = Γ̃1,eqα̇

μ2
2 − μ2

1

(
μ2

1μ
2
2 − a33

a
μ2

1

)
,

(C.5)X2 = Γ̃1,eqα̇

μ2
2 − μ2

1

(
−μ2

1μ
2
2 + a33

a
μ2

2

)
.

Integrating Eqs. (C.1) and (C.2) from 0 to ∞, we derive

(C.6)�c1b = − π1/2

(2α̇)1/2

(
X1

μ1
+ X2

μ2

)
,

�c3b = − π1/2

(2α̇)1/2

[(
1

a13μ
2
1

− a11

a13

)
X1

μ1

(C.7)+
(

1

a13μ
2
2

− a11

a13

)
X2

μ2

]
,

where �cib = ci |x=0 − ci∞. Next, we substitute X1 and X2
from Eq. (C.5) into Eqs. (C.6) and (C.7), and transform the re-
sult with the help of Eq. (B.15):

(C.8)�c1b = −Γ̃1,eq

(
πα̇

2

)1/2(
a33

a
+ 1

a1/2

)
1

μ1 + μ2
,

(C.9)�c3b = Γ̃1,eq

(
πα̇

2

)1/2
a31

a

1

μ1 + μ2
.

Finally, we express μ1 + μ2 from Eq. (B.20), and substitute
Eqs. (C.8) and (C.9) into Eq. (6.14). As a result, we obtain
Eq. (7.5).
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