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Abstract

A colloidal particle adsorbed at a fluid interface could have an undulated, or irregular contact line in the presence of surface r
and/or chemical inhomogeneity. The contact-line undulations produce distortions in the surrounding liquid interface, whose ov
genders capillary interaction between the particles. The convex and concave local deviations of the meniscus shape from plana
formally treated as positive and negative “capillary charges,” which form “capillary multipoles.” Here, we derive theoretical express
the interaction between two capillary multipoles of arbitrary order. Depending on the angle of mutual orientation, the interactio
could exhibit a minimum, or it could represent a monotonic attraction. For undulation amplitudes larger than 5 nm, the interactio
is typically much greater than the thermal energykT . As a consequence, a monolayer from capillary multipoles exhibits considerable
elasticity, and such monolayer is expected to behave as a two-dimensional elastic solid. These theoretical results could be hel
understanding of phenomena related to aggregation and ordering of particles adsorbed at a fluid interface, and for the interpretati
logical properties of particulate monolayers. Related research fields are the particle-stabilized (Pickering) emulsions and the two-d
self-assembly of microscopic particles.
 2005 Elsevier Inc. All rights reserved.
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monolayers; Pickering emulsions; Surface shear elasticity
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1. Introduction

The lateral capillary forces between particles, which
adsorbed at a fluid interface, have been found to play an
portant role in the creation of two-dimensional (2D) arra
of particles and proteins[1–5], the rheology of particulate
monolayers[6,7], Pickering emulsions[8], development of
coatings[9,10], new materials[11–16]. When the adsorbe
particles have an undulated (or irregular) contact line,
analogy with electrostatics, the respective capillary force
be formally treated as interaction between2D multipoles.
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1 Current address: Department of Physics, Freie Universität, D-14195
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So far, only the charge–charge (monopole–monopole)
quadrupole–quadrupole capillary interaction have been
oretically investigated[5,17–20]. Here, our aim is to gener
alize the theory of this type of capillary interaction for mul
poles of arbitrary order, including monopole–multipole. W
first give a brief overview of previous results.

The origin of the lateral capillary forces is the overl
of perturbations in the shape of a liquid interface, wh
are produced by attached particles[17–19]; for reviews see
Refs. [5,7,22]. In the case of floating heavy particles, t
interfacial perturbations are caused by the particle we
(Fig. 1a). In this case, using the superposition approxim
tion, one can derive the expression for the energy of capi
interaction between the two particles[7,18,19,22]
(1.1)�W = −2πσQ1Q2K0(qL),

http://www.elsevier.com/locate/jcis
mailto:pk@lcpe.uni-sofia.bg
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(a)

(b)

Fig. 1. Lateral capillary forces between floating particles: the interactio
due to the overlap of interfacial deformations created by the separate
ticles. (a) The deformations are caused by the action of a normal f
particle weight and buoyancy[18,19], or electrodipping force[23,25].
(b) Even when the normal force is negligible, interfacial deformations co
be engendered by an undulated contact line at the particle surface[6,7].
In this case, forces between the particles can be described as in
tions between “capillary multipoles,” in analogy with electrostatics;
Eq. (1.6) [5,20,21].

whereσ is the interfacial tension,L is the distance betwee
the centers of the two particles;Qi = ri sin(ψi), i = 1,2,
are the so-called “capillary charges”[19]; ri andψi are the
contact-line radius and the slope angle at the contact lin
the respective particle, seeFig. 1a; andK0 is the modified
Bessel function of the second kind and zero order,

(1.2)q2 = �ρg/σ, �ρ = ρI − ρII ,

whereg is the acceleration due to gravity andρI andρII are
the mass densities of the lower and upper fluid phases
a floating spherical particle, the capillary charge is given
the expression[7,18,19]

(1.3)

Qi ≈ 1

6
q2R3

i (2− 4Di + 3 cosαi − cos3 αi) (i = 1,2),

whereRi andαi (i = 1,2) are the particle radius and conta
angle;Di = (ρi −ρII )/(ρI −ρII ); andρi is the particle mas
density. Equation(1.3) is valid for qRi � 1. With the help
of Eqs. (1.1)–(1.3)and typical parameter values, one c
estimate that forRi < 5–10 µm the energy�W is smaller
that the thermal energykT , wherek andT are the Boltz-
mann constant and absolute temperature. In other words
capillary interaction between the particles becomes neg
ble. Physically, this means that in the case considered
particle weight is rather small to create significant inter
cial deformation. Nevertheless, in the latter case, interfa
deformation could be created, but owing to an electric (e
trodipping) force, engendered by charges at the particle
face, rather than by the gravity effect[23–25].

Even in the absence of electrodipping force, inte
cial deformations can appear around small particles
the contact line on the particle surface is undulated, a
Fig. 1b [5–7,20,21]. For example, this could happen in cas

of angular or irregular particle shape, presence of surface
roughness, chemical inhomogeneity, etc. The undulations of
the contact line produce distortions in the surrounding liquid
nterface Science 287 (2005) 121–134
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Fig. 2. Sketch of two particles, “capillary quadrupoles,” A and B, separ
at a distanceL. The signs “+” and “−” symbolize convex and concav
local deviations of the contact line from planarity. TheϕA andϕB denote
the angles of rotation of the respective particles with respect to their in
state (ϕA = ϕB = 0).

interface, whose overlap also brings about a capillary in
action between the two particles. The interest toward s
interactions has been growing during the last decade. F
Lucassen[6] investigated theoretically the capillary forc
between two cubic floating particles. He derived expres
for the interaction energy per unit length of a contact li
which exhibits sinusoidal undulations in a vertical pla
The calculated capillary force has a minimum when the
particles are shifted normally or tangentially with respec
the contact line. As a consequence, the particulate m
layer exhibits elastic response to surface dilatational
shear deformations[6,7,21].

Stamou et al.[20] examined theoretically the case
spherical particles of undulated contact lines and der
an asymptotic expression for the interaction energy betw
two capillary quadrupoles,

(1.4)

�W(L) ≈ −12πσH 2 cos(2ϕA − 2ϕB)
r4
c

L4
(L � 2rc),

whereH is amplitude of the undulation of the contact lin
whose average radius isrc; the anglesϕA andϕB are sub-
tended between the diagonals of the respective quadru
and the line connecting the centers of the two partic
(Fig. 2). The two particles spontaneously rotate to reach
optimal orientation for which the cosine in Eq.(1.4)is equal
to one (maximal attraction and minimal energy). For exa
ple, takingσ = 70 mN/m, H = 20 nm,rc/L = 0.3, from
Eq. (1.4) we calculate�W = 2085kT . In other words, we
are dealing with a physically considerable effect.

In the case of two capillary quadrupoles, a more g
eral expression for�W(L), valid in the whole range 2rc �
L < ∞, has been derived in Ref.[21]. This expression pre
dicts that an adsorption monolayer of particles, which
have as capillary quadrupoles, should exhibit consider
shear elasticity. In general, at close contact between
two particles, one could have�W � kT even for nm-sized
particles[5,21]. This strong capillary interaction can caus
two-dimensional aggregation and ordering of sub-µm pa
cles which are captive at a fluid interface. Multibody inter
tions between capillary quadrupoles have been investig
by Fournier and Galatola[26] who showed that a system
composed of a large number of such particles behaves

jammed system.

Experimentally, interactions between capillary quadru-
poles have been examined by Brown et al.[27], with photo-
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lithography-fabricated curved discs, having one hydroph
and one hydrophobic side. The contact line is attac
to the edge of the curved disc. Different two-dimensio
packing structures were obtained[27]. A variety of struc-
tures were produced in the experiments by Bowden and
workers[2–4] on mesoscale self-assembly. Loudet et al.[28]
reported that micrometer-sized prolate ellipsoids, trappe
an oil–water interface, experience strong, anisotropic,
long-ranged attractive capillary interaction, which can be
plained if the interfacial ellipsoids are described as capil
quadrupoles.

Theoretically, to describe the meniscus shape for the
tem depicted inFig. 1b, one has to solve the linearize
Laplace equation of capillarity for small meniscus slo
|∇ζ |2 � 1:

(1.5)∇2ζ = q2ζ.

Here∇ is the two-dimensional gradient operator in the h
izontal plane,xy. Using cylindrical coordinates (r, ϕ), one
can determine the interfacial shape,z = ζ(r, ϕ), around a
single particle with an undulated contact line[5,20,21],

(1.6)

ζ(r, ϕ) = A0K0(qr) +
∞∑

m=1

AmKm(qr)cos
[
m(ϕ − ϕ0,m)

]
,

wereAm andϕ0,m are constants of integration, andKm is the
modified Bessel function of the second kind andmth order.
Equation(1.6) can be considered as a multipole expans
(a two-dimensional analogue of that in electrostatics).
terms withm = 0,1,2,3, . . . correspond to “charge,” “di
pole,” “quadrupole,” “hexapole,” etc.

Stamou et al.[20] noted that if the particles are free
floating, then the capillary force will spontaneously rot
each particle around a horizontal axis to annihilate the ca
lary dipole moment (unless the particle rotation is hindere
seeFig. 3. Therefore, the term withm = 1 in Eq. (1.6) has
to be skipped. If the particles are sufficiently light, and
electrodipping force[25] is negligible, then the zero-orde
term (the capillary charge) disappears, and the quadrup
term (withm = 2) becomes the leading term in the multipo
expansion, Eq.(1.6).

As already mentioned, for multipoles the sign and m
nitude of the capillary force depend on the particle mut
Fig. 3. The capillary force, due to the interfacial tension,σ , spontaneously
rotates a freely floating particle to annihilate its capillary dipole moment
(m = 1).
nterface Science 287 (2005) 121–134 123
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orientation. For that reason, particles–quadrupoles (m = 2)
will tend to assemble in a square lattice, whereas partic
hexapoles (m = 3) will preferably form a hexagonal lattice
with or without voids (Fig. 4) [3–5]. Another possibility is
that the particles could form simple linear (chain) agg
gates[5,20]. Such structures have been observed experim
tally [2–4,27].

As noted in the beginning, theoretical description
available for the case of interaction between two capill
charges[18,19] and two capillary quadrupoles[20,21]. In
other words, the theoretical description is incomplete,
cause the forces between other types of capillary multip
could be also of interest. For that reason, in the present p
we address the general problem for the interaction betw
two capillary multipoles, A and B, of arbitrary orders,mA
and mB (mA,mB = 0,1,2,3, . . .). For generality, we in-
clude the dipoles (mA,mB = 1), which could be realized a
some special experimental conditions. (Dipolar interacti
of nonelectric origin have been found to play an import
role in various physical processes[29,30].)

In Section2 we first consider an integral expression
the capillary interaction energy,�W(L), and other basic
equations. Next, in Section3 we determine the meniscu
shape around two floating particles of undulated contact
by solving the Laplace equation of capillarity in bipolar c
ordinates. In Section4 we derive an analytical expression f
�W(L) in the general casemA,mB � 2 and 2rc � L < ∞.
Numerical results for�W(L) are presented in the case
two capillary hexapoles. Convenient asymptotic equati
are also derived. Section5 is devoted to the interaction of
capillary charge (mA = 0) with a higher order capillary mul
tipole (mB � 1). Finally, as an application, in Section6 an
expression is derived for the surface shear elasticity o
adsorption monolayer from identical capillary hexapoles

2. Basic equations

We consider two solid particles, A and B, which are
tached to a fluid–liquid interface that would be planar
the absence of particles. The horizontal projections of
contact lines at the particle surfaces are assumed to b
cumferences,CA andCB, of radii rA and rB, respectively.
We assume that the contact lines are undulated in a ve
direction,

ζA = HA cos
[
mA(ϕ − ϕA)

]
,

(2.1)ζB = HB cos
[
mB(ϕ − ϕB)

]
,

where HA and HB are the undulation amplitudes;mA
and mB are the respective multipole orders (mA,mB =
1,2,3, . . .); ϕ is the running azimuthal angle, which pr
vides parameterization of the respective circumferenceCA
or CB; and the anglesϕA andϕB characterize the rotation o

the respective particles around a vertical axis (seeFig. 5).

The meniscus shape around such a particle in isolation
can be found by solving the Laplace equation, Eq.(1.5), us-
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Fig. 4. 2D arrays formed by capillary quadrupoles (m = 2) and hexapoles (m = 3); the signs “+” and “−” denote, respectively, positive and negative “capilla

charges,” i.e., convex and concave local deviations of the meniscus shape from planarity at the contact line. (a) Quadrupoles form tetragonal close-packed
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array [21,27]. Hexapoles could form (b) close-packed array; (c) hexa
contrast with the electric charges, two similar capillary charges attract

(a)

(b)

Fig. 5. Sketch of two “capillary hexapoles,” A and B, separated at a
tanceL. (a) Initial state. (b) An arbitrary mutual orientation characteriz
by the anglesϕA andϕB;CA andCB denote the projections of the respe
tive contact lines, of radiirA andrB, on thexy-plane;n is inner running
unit normal toCA andCB. The angleω of the bipolar coordinates varies i
opposite directions alongCA andCB.

ing Eq. (2.1) as a boundary condition. Thus, we obtain
special case of Eq.(1.6):

(2.2)

ζY (r, ϕ) = HY

KmY
(qr)

KmY
(qrY )

cos
[
mY (ϕ − ϕY )

]
, Y = A,B.

For the air–water interface, we haveq−1 = 2.7 mm. On the
other hand, our typical particle sizes and interparticle
tances are much smaller. Then, forqr � 1, we can use the
asymptotic form of the modified Bessel function:Km(x) ≈
1/xm [31,32]. Correspondingly, Eq.(2.2) acquires the sim
pler form
(2.3)ζY = HB
r
mY

Y

rmY
cos

[
mY (ϕ − ϕY )

]
, Y = A,B.
array with voids[2–4]. (d) Linear aggregates made of quadrupoles[20,27]. In
other, while the interaction between opposite capillary charges is repulsive.

The meniscus excess surface energy, due to the deform
z = ζ(x, y), is equal to the product of the surface tensionσ ,
and the excess surface area[19,20],

W(L) = σ

∫
Sm

ds
[(

1+ |∇ζ |2)1/2 − 1
]

(2.4)≈ σ

2

∫
Sm

ds |∇ζ |2,

whereσ is the interfacial tension,Sm is the orthogonal pro
jection of the meniscus on thexy-plane, and ds is the surface
element.

In the limiting case of two noninteracting particle
A and B, which are separated at a long distance,L � rA,
rB,W(L) can be obtained by calculating the integral
Eq. (2.4) separately forζA andζB and summing the results
The differentiation of Eq.(2.3)yields

(2.5)|∇ζY |2 = m2
Y H 2

Y

r
2mY

Y

r2mY +2
.

Furthermore, we have

∫
SY

|∇ζY |2 ds = 2πm2
Y H 2

Y r
2mY

Y

∞∫
rY

1

r2mY +1
dr

(2.6)= πmY H 2
Y

(mY � 1). Combining Eqs.(2.4) and (2.6), we obtain the
meniscus excess surface energy in the limiting caseL → ∞:

(2.7)W(∞) = πσ

2

(
mAH 2

A + mBH 2
B

)
.

In the special case ofmA = mB = 2, Eq.(2.7)reduces to the
expression for capillary quadrupoles, derived in Ref.[20].



and I

the
ap.
e
:

-

ve

pe,

e

-

,

s
al

of

e

,

K.D. Danov et al. / Journal of Colloid

Now, let us return to the more general case, when
interfacial deformations around the two particles overl
As discussed after Eq.(2.2), we are dealing with the cas
qr � 1, in which Eq.(1.5)can be written in a simpler form

(2.8)∇2ζ = 0.

Note that Eq.(2.3) satisfies Eq.(2.8). Next, we make the
transformation:

(2.9)∇ · (ζ∇ζ ) = (∇ζ ) · ∇ζ + ζ∇2ζ = |∇ζ |2,
where at the last step we have used Eq.(2.8). Further, we
combine Eqs.(2.4) and (2.9)and apply the Green theo
rem[33],

W(L) = σ

2

∫
Sm

ds ∇ · (ζ∇ζ )

(2.10)= σ

2

∑
Y=A,B

∮
CY

dl n · (ζ∇ζ ),

where dl is the linear element along the contoursCA and
CB (Fig. 5b) andn is an inner unit normal to the respecti
contour. Finally, the energy of capillary interaction is

(2.11)�W(L) = W(L) − W(∞),

whereW(L) andW(∞) are given by Eqs.(2.10) and (2.7),
respectively.

3. Meniscus shape in bipolar coordinates

3.1. Introduction of bipolar coordinates

To obtain explicit expressions for the meniscus sha
ζ(x, y), and the capillary interaction energy,�W(L), we
will use bipolar coordinates in thexy-plane, which corre-
spond to the geometry of the system; see, e.g., Refs.[34,35].
These coordinates, denotedτ andω, are defined through th
following set of equations:

x = χ sinh(τ ), y = χ sin(ω),

(3.1)χ = a
/(

cosh(τ ) − cos(ω)
)
.

The linesτ = const. andω = const. are two families of mu
tually orthogonal circumferences (Fig. 6). In Eq. (3.1), a is
a parameter related to the radii of the two contact linesrA
andrB, and to the distance between the two particles,L:

(3.2)a2 = 1

4L2

[
L2 − (rA + rB)2][L2 − (rA − rB)2].

The projections of the two contact lines on thexy-plane,
CA and CB, correspond toτ = −τA and τ = τB, respec-
tively, where
τA = arccosh

(
L2 + r2

A − r2
B

2LrA

)
,

nterface Science 287 (2005) 121–134 125

Fig. 6. Bipolar coordinates (τ,ω) in the xy-plane. The coordinate line
τ = const. andω = const. represent two families of mutually orthogon
circumferences. The contact line projections,CA and CB, correspond to
τ = −τA andτ = τB.

(3.3)τB = arccosh

(
L2 + r2

B − r2
A

2LrB

)
,

(3.4)arccosh(x) = ln
[
x + (x2 − 1)1/2].

Other useful relationships, which follow from Eqs.(3.2)
and (3.3), are

(3.5)sinh(τA) = a

rA
, sinh(τB) = a

rB
.

In bipolar coordinates, the linearized Laplace equation
capillarity, Eq.(2.8), acquires the form

(3.6)
∂2ζ

∂τ2
+ ∂2ζ

∂ω2
= 0,

where ζ = ζ(τ,ω), is the deviation of the fluid interfac
from planarity. We will seek the solution of Eq.(3.6) in the
form of a Fourier expansion:

ζ = HB

∞∑
n=1

[
Cn cos(nω) + Dn sin(nω)

] sinh[n(τA + τ)]
sinh[n(τA + τB)]

(3.7)

+ HA

∞∑
n=1

[
En cos(nω) + Fn sin(nω)

] sinh[n(τB − τ)]
sinh[n(τA + τB)] .

3.2. Determination of the unknown coefficients

To determine the unknown coefficients,Cn, Dn, En,
andFn, we substitute Eq.(3.7) in the boundary condition
Eq.(2.1). Thus we obtain

[ ] ∞∑[ ]

cos mB(ϕ − ϕB) =

n=1

Cn cos(nω) + Dn sin(nω)

(3.8)at τ = τB,
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cos
[
mA(ϕ − ϕA)

] =
∞∑

n=1

[
En cos(nω) + Fn sin(nω)

]

(3.9)at τ = −τA .

To proceed further, we need a connection between the a
ϕ andω. For simplicity, we choose the direction of increa
of angleϕ to be the same as ofω, that is clockwise for the
circumferenceCA, and anticlockwise forCB. Next, in the
relationship sin(ϕ) = y/rY , we substitutey from Eq. (3.1)
andrY from Eq.(3.5); thus, we obtain

(3.10)sin(ϕ) = sinh(τY )sin(ω)

cosh(τY ) − cos(ω)
(Y = A,B).

From Eq.(3.10)we deduce[35]

(3.11)cos(ϕ) = cosh(τY )cos(ω) − 1

cosh(τY ) − cos(ω)
(Y = A,B).

Equations(3.10) and (3.11)indicate that sin(ϕ) and cos(ϕ)

are, respectively, odd and even functions ofω. Hence, we
have

π∫
−π

cos(mϕ)sin(nω)dω = 0,

(3.12)

π∫
−π

sin(mϕ)cos(nω)dω = 0.

With the help of Eq.(3.12), from Eqs.(3.8) and (3.9)we
derive

Cn = cos(mBϕB)A(n,mB, τB),

(3.13)Dn = sin(mBϕB)B(n,mB, τB),

En = cos(mAϕA)A(n,mA, τA),

(3.14)Fn = sin(mAϕA)B(n,mA, τA),

where the functionsA(n,m, τY ) andB(n,m, τY ) do not de-
pend on the anglesϕA andϕB, and are defined as

(3.15)A(n,m, τY ) = 1

π

π∫
−π

cos(mϕ)cos(nω)dω,

(3.16)B(n,m, τY ) = 1

π

π∫
−π

sin(mϕ)sin(nω)dω,

whereϕ is related toω by means of Eq.(3.10). In Appen-
dix A, we prove that

(3.17)

A(n,m, τY ) = B(n,m, τY )

= 1

(m − 1)!
dm−1

dzm−1

[
zn−1(1− βz)m

]∣∣∣∣
z=β

,

(3.18)β = exp(−τY ) (Y = A,B).
For computations, it is more convenient to carry out the
differentiation in Eq.(3.17) and to present the result as a
nterface Science 287 (2005) 121–134

s

polynomial (seeAppendix A),

A(n,m, τY )

(3.19)= m

min(m,n)∑
k=0

(−1)m−k(m + n − k − 1)!
(m − k)!(n − k)!k! βm+n−2k,

where min(m,n) denotes the smallest ofm andn. Finally,
in view of Eqs.(3.13), (3.14), and (3.17), Eq.(3.7)acquires
the form

ζ = HA

∞∑
n=1

A(n,mA, τA)cos(nω − mAϕA)

× sinh[n(τB − τ)]
sinh[n(τA + τB)]

+ HB

∞∑
n=1

A(n,mB, τB)cos(nω − mBϕB)

(3.20)× sinh[n(τA + τ)]
sinh[n(τA + τB)] ,

whereA(n,m, τY ) is given by Eq.(3.19).

4. Energy of interaction between multipoles

4.1. General expression

In bipolar coordinates, Eq.(2.10)takes the form

W(L) = σ

2

π∫
−π

dωζ(ω, τB)
∂ζ

∂τ

∣∣∣∣
τ=τB

(4.1)− σ

2

π∫
−π

dωζ(ω,−τA)
∂ζ

∂τ

∣∣∣∣
τ=−τA

.

Next, from Eq.(3.20) we calculate the derivative∂ζ/∂τ ,
which is then substituted into Eq.(4.1). The result can be
obtained in a relatively compact form with the help of t
identities

(4.2)

π∫
−π

cos(kω − mY ϕY )cos(nω − mY ϕY )dω = πδk,n,

π∫
−π

cos(kω − mAϕA)cos(nω − mBϕB)dω

(4.3)= π cos(mBϕB − mAϕA)δk,n.

Thus, we derive the sought-for expression for the surface
cess energyW(L),

(4.4)

W(L)

πσ
= H 2

ASA + H 2
BSB − HAHBGcos(mBϕB − mAϕA),

where
(4.5)
SY =

∞∑
n=1

n

2
coth

[
n(τA + τB)

]
A2(n,mY , τY ) (Y = A,B),
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(4.6)G ≡
∞∑

n=1

nA(n,mA, τA)A(n,mB, τB)

sinh[n(τA + τB)] .

The energy of capillary interaction,�W(L), can be obtained
by substitution of Eq.(4.4)into Eq.(2.11). This in principle,
solves the problem, becauseA(n,m, τY ) is a known func-
tion, given by Eq.(3.19). The derivative,F = −dW(L)/dL,
gives the interaction force. FormA = mB = 2, Eq.(4.4) re-
duces to Eq. (3.17) in Ref.[21]; note that (by definition)ϕA

in the latter reference isπ − ϕA in the present paper.
In the case of close contact,L → rA + rB, from Eqs.(3.2)

and (3.5)we obtaina = 0 andτA = τB = 0. At a first glance,
it could seem thatSY andG, given by Eqs.(4.5) and (4.6),
are divergent in this limit. However, it turns out that f
L → rA + rB, the functionsSY andG take finite values, be
cause the numerators in Eqs.(4.5) and (4.6)tend to zero.
The respective limiting values ofSY andG can be computed
numerically.

Equations(4.4)–(4.6) are applicable to calculation o
the interaction energy between two capillary multipoles
everymA,mB � 1, and forrA + rB � L < ∞. The condi-
tion mA,mB � 1 is necessary, because ifmY = 0 (capillary
charge), the integral in Eq.(2.6) is divergent. For this rea
son, in Section5 we separately investigate the interaction
a capillary charge with capillary multipoles of various o
ders.

4.2. Asymptotics for large distance L

For large interparticle distances, we have

(4.7)βY ≡ exp(−τY ) ≈ rY

L
� 1 (Y = A,B);

see Eqs.(3.3) and (3.4). With the help of Eq.(4.7), one can
determine the leading terms in the asymptotics ofSA, SB,
andG for largeL, see Eqs.(4.5), (4.6)andAppendix B,

(4.8)SA = mA

2
+ m2

A
r

2mA
A

L2mA

r2
B

L2
+ · · · ,

(4.9)SB = mB

2
+ m2

B
r2
A

L2

r
2mB
B

L2mB
+ · · · ,

(4.10)G = G0
r
mA
A

LmA

r
mB
B

LmB
+ · · · ,

whereG0 is constant (independent ofL):

(4.11)G0 =
min(mA ,mB)∑

n=1

2(−1)mA+mBmA !mB!
(mA − n)!(mB − n)!n!(n − 1)! .

Values of G0 corresponding to differentmA and mB are
listed inTable 1.

One can check that the first terms in Eqs.(4.8) and (4.9),

mA/2 andmB/2, after substitution into Eq.(4.4), give the
expression forW(∞), Eq. (2.7). Then, for|mA − mB| � 1,
the leading term in�W for L → ∞ comes from the function
nterface Science 287 (2005) 121–134 127

Table 1
Values ofG0 for differentmA andmB

mA mB G0

2 2 12
2 3 −24
2 4 40
2 5 −60
3 3 60
3 4 −120
3 5 210
4 4 280
4 4 −560
5 5 1260

G, see Eqs.(2.11), (4.4), and (4.10):

(4.12)

�W(L) ≈ −πσG0HAHB cos(mAϕA − mBϕB)
r
mA
A r

mB
B

L(mA+mB)
.

For two quadrupoles,mA = mB = 2, we haveG0 = 12, and
Eq.(4.12)gives Eq.(1.4)as a special case forHA = HB = H

and rA = rB = rc. For two hexapoles,mA = mB = 3, we
haveG0 = 60, and Eq.(4.12)reduces to

(4.12a)

�W(L) ≈ −60πσH 2 cos(3ϕA − 3ϕB)
r6
c

L6
(L � 2rc).

If the particles are free to rotate around a vertical axis,
orientational anglesϕA andϕB will spontaneously reach ap
propriate values, for which the cosine in Eq.(4.12)is equal
to 1 for G0 > 0 (or −1 for G0 < 0), and thus to reac
the minimal value of�W (the maximal attraction) for th
givenL.

In Table 2, we give the form of Eq.(4.12)for some specia
cases, corresponding to differentmA andmB, including the
case withmA = 0, where one of the two interacting particl
represents capillary charge. The latter case is investigat
Section5.

4.3. Example: interaction between two hexapoles

To calculate the exact dependence�W(L), we used
Eqs. (4.4)–(4.6), together with Eq.(3.3). Fig. 7 shows
�W(L) curves for two identical particles–hexapoles:HA =
HB = H andrA = rB = rc. The different curves correspon
to different values of the phase angle,

(4.13)�ϕ ≡ 3ϕA − 3ϕB;
seeFig. 5b. For 5◦ < �ϕ < 25◦, the dependence�W(L)

has a minimum; i.e., the interaction is attractive at lo
distances and repulsive at short distances. In contras
0 � �ϕ < 5◦ the interaction is attraction at all distance
This result qualitatively resembles the results for two c
illary quadrupoles[21].

The global minimum of�W (maximal attraction), which

corresponds to�ϕ = 0 andL = 2rc, is

(4.14)�Wmin ≈ −0.6(πσH 2).
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Table 2
Asymptotic expressions for�W(L) for some values ofmA andmB

Type of interaction (mA ,mB) Interaction energy�W(L) for rA , rB � L � q−1

Charge–quadrupole (0,2) −π
2 σQAHB cos[2(ϕB − π)]( rB

L

)2

Charge–multipole (0,mB) −π
2 σQAHB cos[mB(ϕB − π)]( rB

L

)mB

Dipole–quadrupole (1,2) 4πσHAHB cos[ϕA − 2ϕB] rA r2
B

L3

Quadrupole–quadrupole (2,2) −12πσHAHB cos[2(ϕA − ϕB)] (rA rB)2

L4

Quadrupole–hexapole (2,3) 24πσHAHB cos(2ϕA − 3ϕB)
r2
A r3

B
L5

Hexapole–hexapole (3,3) −60πσHAHB cos(3ϕA − 3ϕB)
r3
A r3

B
L6

Hexapole–octupole (3,4) 120πσH H cos(3ϕ − 4ϕ )
r3
A r4

B

A B A B L7
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Fig. 7. Energy of interaction between two capillary hexapoles (mA =
mB = 3), �W(L), scaled withπσH2, plotted vsL/(2rc). The lines are
calculated by means of Eqs.(4.4)–(4.6) and (3.3)for two identical parti-
cles: HA = HB = H ; rA = rB = rc. The different curves correspond
different values of the phase angle�ϕ, denoted in the figure. The dash
line represents the asymptotic expression for large interparticle dista
Eq.(4.12a), for �ϕ = 0.

For σ = 70 mN/m, H = 10 nm, andT = 25◦C, from
Eq. (4.14)we calculate�Wmin = −3218kT . This result in-
dicates again that the energy of this type of capillary inte
tion is very large compared to the thermal energykT , even
for undulations of amplitude 10 nm. It is worth noting th
for a givenH , �Wmin does not depend onrc (that is on the
particle size), see Eq.(4.14). In other words, for the sameH ,
the energy of capillary attraction at close contact is the s
for hexapoles of radius, say, 100 nm and 10 µm.

The lowest dashed line inFig. 7 is calculated with the
asymptotic formula, Eq.(4.12a), for mA = mB = 3 and
�ϕ = 0. In the figure it is seen that the asymptotic f
mula becomes sufficiently accurate forL/(2rc) > 1.5. Note,
however, that this asymptotic formula cannot describe
non-monotonic behavior of�W(L) for 5◦ < �ϕ < 25◦.

Due to the cosine in Eq.(4.4), at fixedL, the function

�W(�ϕ) has a pronounced minimum at�ϕ = 0. As in
the case of capillary quadrupoles[21], the existence of such
a minimum is the reason for the appearance of consider-
−G0πσHAHB cos(mAϕA − mBϕB)
r
mA
A r

mB
B

L(mA+mB)

,

able shear elasticity in adsorption monolayers of partic
hexapoles. Expression for the respective modulus of s
elasticity is derived in Section6.

5. Interaction between a capillary charge and a
capillary multipole

5.1. Meniscus profile

We consider again two solid particles, A and B, wh
are attached to a fluid–liquid interface. The horizontal p
jections of the contact lines at the particle surfaces are
sumed to be circumferences,CA and CB, of radii rA and
rB, respectively. We assume that particle A is a capill
charge, while particle B is a capillary multipole of ord
mB (mB = 1,2,3, . . .). As before, the meniscus shape is d
scribed by the equationz = ζ(x, y). At the contact lines we
have the following boundary conditions:

(5.1)ζ |CA = HA, ζ |CB = HB cos
[
mB(ϕ − ϕB)

]
.

To solve the problem, in this section we use the supe
sition method; i.e., we try the solution in the form

(5.2)ζ = ζA + ζB,

whereζA andζB satisfy the linearized Laplace equation
capillarity,

(5.3)∇2ζA = q2ζA, ∇2ζB = q2ζB,

see Eq.(1.5), and the boundary conditions

(5.4)ζA |CA ≡ ζA,c = HA,

(5.5)ζB|CB ≡ ζB,c = HB cos
[
mB(ϕ − ϕB)

]
,

(5.6)ζA |CB = ζB|CA = 0.
The boundary conditions(5.4)–(5.6)guarantee the fulfill-
ment of the boundary condition(5.1). In the caseqL � 1,
the solution forζB, which satisfies Eqs.(5.5) and (5.6), can
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Fig. 8. Two sets of polar coordinates in thexy-plane, (ρA ,ψA) and
(ρB,ψB), associated with the two particles.P is an arbitrary point in the
plane.CA andCB are circumferences of radiusrA and rB, respectively,
representing the horizontal projections of the respective contact lines.

be determined by substitutingHA = 0 in Eq.(3.20):

ζB = HB

∞∑
n=1

A(n,mB, τB)cos(nω − mBϕB)

(5.7)× sinh[n(τA + τ)]
sinh[n(τA + τB)] .

On the other hand,ζA can be presented in the form

(5.8)ζA = QAK0(qρA) + ζ corr
A , HA = QAK0(qrA),

whereQA is the capillary charge,ρA is a position vector
shown inFig. 8, andζ corr

A is a small correction of the lead
ing order solution. The role ofζ corr

A , which also satisfies th
Laplace equation(5.3), is to guarantee the fulfillment of th
boundary condition(5.6):

(5.9)ζ corr
A

∣∣
CA

= 0, ζ corr
A

∣∣
CB

= −QAK0(qρA).

5.2. Interaction energy

In the considered case,qL � 1, we can use Eqs.(2.10)
and (4.1)for the meniscus excess surface energy,W(L). In
view of the latter two equations, using Eqs.(5.4) and (5.7),
one can present the integral overCA in the form

(5.10)
∮
CA

dl
[
n · ∇(ζA + ζB)

]
ζA,c = HA

∮
CA

dl (n · ∇ζA).

Using the approach from Section4.1, we express the integra
overCB in the form

(5.11)

∮
CB

dl
[
n · ∇(ζA + ζB)

]
ζB,c =

∮
CB

dl (n · ∇ζA)ζB,c + 2πH 2
BSB,

where Eqs.(5.5) and (5.7)have been used;SB is defined by
Eq.(5.5). Finally, from Eqs.(2.10), (5.2), (5.4)–(5.6), (5.10
and (5.11), we obtain

2

σ
W(L) = HA

∮
dl (n · ∇ζA) +

∮
dl (n · ∇ζA)ζB,c
CA CB

(5.12)+ 2πH 2
BSB.
nterface Science 287 (2005) 121–134 129

Let us first calculate the cross-interaction integral in
(5.12), defined as

(5.13)IAB ≡
∮
CB

dl (n · ∇ζA)ζB,c.

In the calculations we will use two sets of polar coordina
in thexy-plane, (ρA,ψA) and (ρB,ψB), with respect to the
two particles (Fig. 8). A helpful relationship between thes
coordinates is given by the cosine theorem:

(5.14)ρ2
A = L2 + ρ2

B + 2LρB cosψB.

In terms of these coordinates, we can express Eq.(5.13) in
the form

(5.15)IAB = −HBrB cos(mBϕB)

2π∫
0

cos(mBψB)
∂ζA

∂ρB
dψB,

where we have substitutedζB,c from Eq. (5.5) and have
used thatζA is an even function ofψB. Further, with the
help of Eqs.(5.8) and (5.14), we calculate the derivative i
Eq.(5.15)up to terms on the order of(qL)2:

(5.16)
∂ζA

∂ρB
= QA

dK0(qρA)

dρA

∂ρA

∂ρB
= −QA

ρ2
A

(ρB + LcosψB).

With ρB = rB and ρA given by Eq.(5.14), we substitute
Eq. (5.16)into Eq.(5.15)and carry out the integration. Th
result reads

(5.17)IAB = −πQAHB cos
[
mB(ϕB − π)

] r
mB
B

LmB
.

Further, using Eq.(5.8), we obtain

(5.18)
∮
CA

dl (n · ∇ζA) = 2πQA + IAA ,

where

(5.19)IAA =
∮
CA

dl
(
n · ∇ζ corr

A

)
.

With the help of Eq.(5.14), in the boundary condition atCB,
Eq.(5.9), we expand in series forqL � 1 andrB/L � 1:

ζ corr
A

QA
= −K0(qL) + rB

L
cosψB

(5.20)− 1

2

(
rB

L

)2

cos(2ψB) + · · · atCB.

Using Eq.(5.20), we obtainζ corr
A as a solution of the Laplac

equation(5.3), in a form analogous to the multipole expa
sion, Eq.(1.6):

(5.21)

ζ corr
A = −QA

K0(qL)

K0(qrB)
K0(qρB) + QA

rB

L

rB

ρB
cosψB + · · · .
One could check that the substitution of Eq.(5.21) into
Eq. (5.19)yields IAA = 0, within an accuracyO[(rY /L)5].
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Using Eqs.(5.10), (5.11), (5.13), (5.17), and (5.18), we can
rewrite Eq.(5.12)in the form

W(L)

πσ
= Q2

AGA + H 2
BSB

(5.22)− 1

2
QAHB cos

[
mB(ϕB − π)

] r
mB
B

LmB
,

whereGA = K0(qrA) + O[(rY /L)5]; see Eq.(5.8).

5.3. Discussion

In fact, the last term in Eqs.(4.4) and (5.22), which de-
pends on the angles of mutual orientation,ϕA andϕB, give
the essential part of the interaction between the two capi
multipoles. The other terms, proportional toSA(L), SB(L),
andGA(L), originate from the “rigid” boundary condition
imposed at the contact lines; see, e.g., Eqs.(5.4)–(5.6). For
example, the requirementζA |CB = 0 leads to the appea
ance of a series of correction multipole expansion atCB;
see Eq.(5.20). However, if the particle B is freely floating
then the mean level and slope of its contact line will
just to comply with the mean elevation and slope ofζA(ρA)

at CB. To take into account such effects of “contact-li
adjustment,” one has to carry out additional theoretical
vestigation, which is out of the scope of the present artic

6. Shear elasticity of monolayer from hexapoles

6.1. Basic equations

Here, we give an application of the derived equation
derive an expression for the shear elasticity of a monola
of particles, which behave as capillaryhexapoles. Such parti-
cles have been investigated experimentally[2–4]. Our results
represent an upgrade of Ref.[21], where analogous expre
sions for capillaryquadrupoles have been derived.

We consider an adsorption layer of capillary hexapo
which is subjected to shear along they-axis; seeFig. 9.
Following the thermodynamic approach of Landau and
shitz[36], one can determine the shear elastic modulus,ES,
by differentiation of the free energy of the system,Ω , with
respect to the shear deformation (see Eq.(4.1) in Ref. [36]),

(6.1)ES = 1

2uyx

∂Ω

∂uyx

,

where the coefficient of surface shear elasticity,ES, is a 2D
analogue of the coefficient of Lamé,µ, in Ref.[36]. Ω is free
energy (or grand thermodynamic potential) per unit are
the adsorption layer. For small shear angles, the relative
placement along they-axis,uyx = (∂uy/∂x)/2, is equal to
ϕS/2, whereϕS is the shearing angle. For not-too-small p
ticles, the entropy contribution inΩ is small in comparison

with the contribution from the particle–particle interaction
energy. Then an approximate expression forΩ can be ob-
tained by taking into account only the interactions between
nterface Science 287 (2005) 121–134

Fig. 9. Hexagonally packed layer of capillary hexapoles, which is subje
to shear deformation along they-axis. L1 is the center-to-center distanc
between two neighboring particles;ϕS is the shearing angle;ϕH is the angle
of rotation of each particle due to the shear deformation; the other nota
are explained in the text.

the first neighbors in the particle monolayer:

(6.2)Ω ≈ 1

2
N1U(L1) = U(L1)√

3L2
1

.

Here,N1 is the number of particles per unit area of the
sorption monolayer;L1 is the distance between two neig
boring particles (Fig. 9); andU(L1) is the interaction of a
given particle in the monolayer with all of itsfirst neigh-
bors. The multiplier 1/2 in Eq. (6.2) appears because w
must account only once for the interaction for each pai
particles. We have also used the fact that for hexagonal p
ing, the area per particle in the monolayer isA1 = 1/N1 =
(
√

3/2)L2
1. Having in mind thatuyx = ϕS/2, we combine

Eqs.(6.1) and (6.2)to obtain

(6.3)ES = 2√
3

1

L2
1ϕS

∂U(L1)

∂ϕS
.

During the shear deformation, depicted inFig. 9, the neigh-
boring “columns” of particles undergo mutual displacem
along they-axis. Thus, the right-hand side column is sift
at a distance�y with respect to the central column (Fig. 9).
The shear angle is

(6.4)ϕS ≈ �y

�x
= �y

L1 sin(60◦)
= 2�y√

3L1
,

where�x is the distance between the two columns. On the
other hand, in the derivations below we will employ the aux-
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iliary angleθ , which is defined as follows (seeFig. 9):

(6.5)θ ≈ �y sin(60◦)
L1

=
√

3�y

2L1
.

Comparing Eqs.(6.4) and (6.5), we obtain

(6.6)θ = 3

4
ϕS.

6.2. Interaction of a given particle with its first neighbors

The interaction energy,U(L1), of the central particle in
Fig. 9with its first neighbors can be expressed in the form

(6.7)U = 2(W1 + W2 + W3),

where W1, W2, and W3 is the energy of interaction o
the central particle, respectively, with particles 1, 2, and
shown inFig. 9. The multiplier 2 in Eq.(6.7)accounts for the
fact that the energy of interaction with the remaining th
neighbors is the same as with the particles 1, 2, and 3,
ing to the symmetry of the system. For identical capilla
hexapoles,mA = mB = 3, Eq.(4.4)yields

(6.8)W(L1) = πσH 2[2S1 − G1 cos(3ϕB − 3ϕA)
]
,

where

H = HA = HB, S1 = SA(L1) = SB(L1),

(6.9)G1 = G(L1).

As noted in Ref.[21], the shear leads to a rotation of t
hexapoles to a given angle (with respect to their initial o
entation), which will be denoted byϕH. In general,ϕH �= ϕS.
Since the particles have identical environment, it is natura
assume that the angle of rotation,ϕH, is the same for all o
them. Following Ref.[21], we will find ϕH by minimiza-
tion of the total interaction energy between the partic
U(L1, ϕS, ϕH):

(6.10)
∂U

∂ϕH

∣∣∣∣
ϕS,L1

= 0.

First, let us consider the interaction of the “central p
ticle” with “particle 1” (Fig. 9). Both particles are rotate
at an angleϕH, counterclockwise. If we take as referen
mark the negative “capillary charge” denoted inFig. 9, then
for the central particle we haveϕA = (5/6)π − ϕH. In ad-
dition, for particle 1 we haveϕB = (5/6)π + ϕH. Conse-
quently,�ϕ ≡ ϕB − ϕA = 2ϕH. Substituting the latter valu
into Eq.(6.8), we get

(6.11)W1 = πσH 2[2S1 − G1 cos(6ϕH)
]
.

Second, let us consider the interaction of the central p
cle withparticle 2 (Fig. 10). Taking as a reference marker t
positive “capillary charge,” denoted inFig. 10, for the cen-
tral particle we haveϕA = (5/6)π + θ − ϕH. In addition, for

particle 2 we haveϕB = π − ψ + ϕH, where the angleψ is
also shown inFig. 10. From triangleOO ′

2P we obtainψ =
π/2−(π/3−θ). As a result, we getϕB = π −π/6−θ +ϕH.
nterface Science 287 (2005) 121–134 131

Fig. 10. Calculation of the capillary interaction between the central
ticle and particle 2 inFig. 9. From the triangleOO ′

2P one sees tha
ψ + 60◦ − θ = 90◦. The other notations and details are explained in
text.

Consequently,ϕB − ϕA = 2θ − 2ϕH. Substituting the latte
value in Eq.(6.8), we get

(6.12)W2 = πσH 2[2S1 − G1 cos(6ϕH − 6θ)
]
.

In a similar way, it can be proved thatW3 = W2. Hence, in
view of Eqs.(6.11) and (6.12), Eq.(6.7)acquires the form

(6.13)

U = 2πσH 2[6S1 − G1 cos(6ϕH) − 2G1 cos(6ϕH − 6θ)
]
.

Next, to determineϕH, we substitute Eq.(6.13) into Eq.
(6.10). In this way, using the approximation sin(x) ≈ x (for
x � 1), we obtain

(6.14)ϕH = 2

3
θ = 1

2
ϕS,

where at the last step we have employed Eq.(6.6). The sub-
stitution of Eqs.(6.6) and (6.14)into Eq.(6.13)yields

(6.15)

U = 2πσH 2[6S1 − G1 cos(3ϕS) − 2G1 cos
(
(3/2)ϕS

)]
.

Equation(6.15)gives the explicit dependence ofU on ϕS,
which, after a substitution in Eq.(6.3), finally leads to an
expression for the surface shear elasticity:

(6.16)ES = 18
√

3πG1σ(H/L1)
2.

In general, we haveL1 � 2rc, because the electrostatic r
pulsion between the particles across the nonaqueous p
could keep them separated at a certain distance apart[37,38].
Thus, G1 = G(L1) has to be calculated from Eqs.(3.3),
(3.19), and (4.6). If such repulsion is missing, and the pa
ticles are in close contact, thenL1 → 2rc, τY → 0, and
Eq.(4.6)gives a finite limiting value forG1, which has been
determined by us numerically:

(6.17)G(L1 = 2rc) = 2.60816. . . .
Substituting the latter value forG1 into Eq. (6.16), we get
the value of the shear elasticity at close contact between the



and I

a 2D

ld
par-
res-
. The
nd-
ter-

pla
tive

re-
mult
s
or-
rac
es-

res-
les

ter-

ter-
the

ic
ng

y in-

in-
yers
en-

can
lay-

,

ction

n-
and
for

ay-
are
o-

ion
he
he
fig-

ry

ar-

,
area

sti-
132 K.D. Danov et al. / Journal of Colloid

particles:

(6.18)ES = 255.46σ(H/2rc)
2.

For example, substitutingσ = 50 mN/m andH/(2rc) = 0.1,
from Eq. (6.18) we obtainES = 127.7 mN/m, which is a
considerable value. Such monolayer should behave as
elastic solid, rather than a 2D fluid. (For a fluid,ES = 0 by
definition.)

7. Summary and conclusions

A colloidal particle adsorbed at a fluid interface cou
have an undulated, or irregular, contact line when the
ticle shape is nonspherical, angular, or irregular in the p
ence of surface roughness, chemical inhomogeneity, etc
contact-line undulations produce distortions in the surrou
ing liquid interface, whose overlap engenders capillary in
action between two adsorbed particles (Fig. 1b). The convex
and concave local deviations of the meniscus shape from
narity can be theoretically treated as positive and nega
capillary charges, which form capillary multipoles. Cor
spondingly, the meniscus shape can be expressed as a
pole expansion, Eq.(1.6). In general, this expansion involve
multipoles of various orders. For this reason, it is imp
tant to have at our disposal equations describing the inte
tion between different modes. Until now, theoretical expr
sions have been derived only for the charge–charge[18,19]
and quadrupole–quadrupole[20,21] interaction energy. As a
generalization of previous studies, here, we derive exp
sions for the interaction between two capillary multipo
of arbitrary order; see Eqs.(4.4)–(4.6). Simpler asymptotic
expressions for the interaction energy at not-too-short in
particle distances are also derived; see Eqs.(4.12) and (5.22).

Numerical results are presented for the energy of in
action between two capillary hexapoles as a function of
interparticle distance,L, and phase angle,�ϕ, seeFig. 7.
Depending on�ϕ, the interaction could be either monoton
attraction, or monotonic repulsion, or it is attraction at lo
distances but repulsion at short distances. The capillar
teraction energy scales asπσH 2 (σ—interfacial tension,
H—undulation amplitude). Typically, forH � 5 nm, this
energy is much greater than the thermal energykT . For this
reason, the forces between capillary multipoles certainly
fluence many phenomena with particles, particle monola
and particle arrays at fluid interfaces, although experim
tally, these effects are still insufficiently explored.

Based on the results for the interaction energy, one
predict also the rheological behavior of adsorption mono
ers from capillary multipoles. As an illustration, in Section6
we derived an expression for the surface shear elasticityES,
of a monolayer from capillary hexapoles, Eq.(6.16). Ow-
ing to the pronounced angular dependence of the intera

energy, the adsorption monolayer of capillary multipoles ex-
hibits a considerable shear elasticity, and should behave as
2D elastic solid, rather than 2D fluid.
nterface Science 287 (2005) 121–134

-

i-

-

The results of this paper could be helpful for the u
derstanding of some phenomena related to aggregation
ordering of particles adsorbed at a fluid interface, and
the interpretation of the rheological behavior of monol
ers from nonspherical particles. Related research fields
the particle-stabilized (Pickering) emulsions and the tw
dimensional self-assembly of microscopic particles.
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Appendix A. The coefficients A(n,m,τ) and B(n,m,τ)

Here, our aim is to determine the coefficientsA(n,m, τY )

andB(n,m, τY ), i.e., to calculate the integrals in Eqs.(3.15)
and (3.16). For this purpose, let us first consider the auxilia
integral

(A.1)I (n,m,α) ≡ 1

2πi

∮
|z|=1

zn−1 (αz − 1)m

(α − z)m
dz = 0,

wherem � 0; n � 1; α = exp(τY ) > 1; i is the imaginary
unit; z is a complex variable; and the integration is c
ried out over the unit circumference,|z| = 1, in the complex
plane—seeFig. 11. The integral in Eq.(A.1) is equal to zero
because the integrand has no singular points inside the
encircled by the contour of integration. Next, let us sub
tute

(A.2)z = exp(iω) at |z| = 1.

With the help of Eq.(A.2) we obtain

αz − 1

α − z
= α cosω − 1+ iα sinω

α − cosω − i sinω

(A.3)

= (α2 + 1)cosω − 2α

α2 − 2α cosω + 1
+ i

(α2 − 1)sinω

α2 − 2α cosω + 1
.

aFig. 11. The integration in Eq.(A.1) is carried out over the unit circumfer-
ence,|z| = 1, in the complex plane.
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Having in mind the definition ofα, and Eqs.(3.10) and
(3.11), we bring Eq.(A.3) into the following simpler form:

(A.4)
αz − 1

α − z
= exp(iϕ).

Further, we substitute Eqs.(A.2) and (A.4)into Eq. (A.1),
and derive

I (n,m,α) = 1

2π

π∫
−π

exp
[
i(nω + mϕ)

]
dω

(A.5)= 1

2π

π∫
−π

cos(nω + mϕ)dω.

Comparing the definitions, Eqs.(3.15) and (3.16), with Eq.
(A.5), we obtain 2I (n,m,α) = A(n,m, τY ) − B(n,m, τY ).
However, Eq.(A.1) shows thatI (n,m,α) = 0. Hence,

(A.6)A(n,m, τY ) = B(n,m, τY ) (n � 1).

See also Eq.(3.17)in the main text. Next, let us consider th
integral

(A.7)I (n,−m,α) ≡ 1

2πi

∮
|z|=1

zn−1 (α − z)m

(αz − 1)m
dz,

wherem � 1 andn � 1. In Eq. (A.7), the integrand has
pole ofmth order atz = 1/α, inside the unit circle|z| � 1.
Then, with the help of the residuum theorem, we obtain

I (n,−m,α) = Res
z=1/α

{
zn−1 (α − z)m

(αz − 1)m

}

(A.8)= 1

(m − 1)!αm

dm−1

dzm−1

[
zn−1(α − z)m

]∣∣∣∣
z=1/α

.

Next, we replacem with −m in Eq. (A.5) and compare the
result with Eqs.(3.15), (3.16), and (A.6). Thus we find

(A.9)I (n,−m,α) = A(n,m, τY ).

The combination of Eqs.(A.8) and (A.9)yields Eq.(3.17)
in the main text. Further, in Eq.(A.8) we introduce the vari
ablesβ = α−1 and t = βz. Using the binomial expansion
we derive

A(n,m, τY ) = βm−n

(m − 1)!
(A.10)× dm−1

dtm−1

m∑
k=0

(−1)m−k

(
m

k

)
tm−k+n−1

∣∣∣∣
t=β2

.

Finally, we carry out the differentiation in Eq.(A.10), and
obtain Eq.(3.19).

Appendix B. Asymptotics of G, SA, and SB

From Eq.(3.19)it follows that

βnA(n,m, τY )
(B.1)= m

min(m,n)∑
k=0

(−1)m−k(m + n − k − 1)!
(m − k)!(n − k)!k! βm+2n−2k.
nterface Science 287 (2005) 121–134 133

For n � m, the minimal possible power ofβ, in the right-
hand side of Eq.(B.1), corresponds to the maximal valu
of k, which isk = n. Then, forβ � 1, the leading term in
Eq.(B.1) is

(B.2)

βnA(n,m,β) = (−1)m−n m!
(m − n)!n!β

m + · · · (n � m).

For n > m, the maximal value ofk is k = m, and thus the
minimal possible power ofβ in Eq. (B.1) is β2n−m � βm.
Hence, the leading term in the asymptotics of Eq.(B.1) is
that given by Eq.(B.2).

For βY ≡ exp(−τY ) ≈ rY /L � 1, the general term in th
sum in Eq.(4.6)can be presented in the form

nA(n,mA, τA)A(n,mB, τB)

sinh[n(τA + τB)]
(B.3)≈ 2nβn

Aβn
BA(n,mA, βA)A(n,mB, βB).

The substitution of Eqs.(B.2) and (B.3)into Eq.(4.6) leads
to the asymptotic expression forG, Eq.(4.10).

What concerns the asymptotics ofSA andSB for L →
∞, we could not find a general analytical derivation, li
that for G above. For this reason, we expanded Eq.(4.5)
in series forβY � 1 by means of a computer program f
mathematical transformations, “Mathematica 3.0” (Wolfr
Research Inc.). In this way, we established the validity
Eqs.(4.8) and (4.9)for mA andmB taking any of the value
1, 2, 3, 4, and 5.
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