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Abstract

A colloidal particle adsorbed at a fluid interface could have an undulated, or irregular contact line in the presence of surface roughness
and/or chemical inhomogeneity. The contact-line undulations produce distortions in the surrounding liquid interface, whose overlap en-
genders capillary interaction between the particles. The convex and concave local deviations of the meniscus shape from planarity can be
formally treated as positive and negative “capillary charges,” which form “capillary multipoles.” Here, we derive theoretical expressions for
the interaction between two capillary multipoles of arbitrary order. Depending on the angle of mutual orientation, the interaction energy
could exhibit a minimum, or it could represent a monotonic attraction. For undulation amplitudes larger than 5 nm, the interaction energy
is typically much greater than the thermal enekd@y As a consequence, a monolayer from capillary multipoles exhibits considerable shear
elasticity, and such monolayer is expected to behave as a two-dimensional elastic solid. These theoretical results could be helpful for the
understanding of phenomena related to aggregation and ordering of particles adsorbed at a fluid interface, and for the interpretation of rheo-
logical properties of particulate monolayers. Related research fields are the particle-stabilized (Pickering) emulsions and the two-dimensional
self-assembly of microscopic particles.
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1. Introduction So far, only the charge—charge (monopole—-monopole) and
quadrupole—quadrupole capillary interaction have been the-
The lateral capillary forces between particles, which are oretically investigated5,17-20] Here, our aim is to gener-
adsorbed at a fluid interface, have been found to play an im-alize the theory of this type of capillary interaction for multi-
portant role in the creation of two-dimensional (2D) arrays Poles of arbitrary order, including monopole—multipole. We
of particles and proteingl—5], the rheology of particulate  first give a brief overview of previous results.
monolayerg6,7], Pickering emulsiond], development of The origin of the lateral capillary forces is the overlap
coatings[9,10], new material§11-16] When the adsorbed  of perturbations in the shape of a liquid interface, which
particles have an undulated (or irregular) contact line, by are produced by attached partic[¢g—19} for reviews see
analogy with electrostatics, the respective capillary force can Refs.[5,7,22] In the case of floating heavy particles, the
be formally treated as interaction betwe2d multipoles. interfacial perturbations are caused by the particle weight
(Fig. 1a). In this case, using the superposition approxima-
tion, one can derive the expression for the energy of capillary
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(b)

Fig. 1. Lateral capillary forces between floating particles: the interaction is
due to the overlap of interfacial deformations created by the separate par-
ticles. (a) The deformations are caused by the action of a normal force:
particle weight and buoyancf18,19] or electrodipping forcg23,25]

(b) Even when the normal force is negligible, interfacial deformations could
be engendered by an undulated contact line at the particle sUfade

In this case, forces between the particles can be described as interac
tions between “capillary multipoles,” in analogy with electrostatics; see
Eqg.(1.6) [5,20,21]

whereo is the interfacial tensiory, is the distance between
the centers of the two particle®); = r; sin(y;), i = 1,2,

are the so-called “capillary chargelg9]; r; andy; are the
contact-line radius and the slope angle at the contact line of
the respective particle, sé€g. 1a; andKy is the modified
Bessel function of the second kind and zero order,

q?=Apg/o. Ap=pi—pi, 1.2)

whereg is the acceleration due to gravity apdandp are

the mass densities of the lower and upper fluid phases. For

a floating spherical particle, the capillary charge is given by
the expressiofi7,18,19]

0; ~ %qu?(Z —4D; +3cosy; — oS a;) (i =1,2),

1.3)
whereR; ande; (i =1, 2) are the particle radius and contact
angle;D; = (p; — pn)/(o1 — pi1); andp; is the particle mass
density. Equatior{1.3) is valid for g R; <« 1. With the help
of Egs. (1.1)—-(1.3)and typical parameter values, one can
estimate that folR; < 5-10 um the energa W is smaller
that the thermal energyT, wherek and T are the Boltz-
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Fig. 2. Sketch of two particles, “capillary quadrupoles,” A and B, separated
at a distancd.. The signs 4" and “—" symbolize convex and concave
local deviations of the contact line from planarity. Thg andgg denote

the angles of rotation of the respective particles with respect to their initial
state pp = ¢ =0).

interface, whose overlap also brings about a capillary inter-
action between the two particles. The interest toward such
interactions has been growing during the last decade. First,
Lucassen6] investigated theoretically the capillary force

between two cubic floating particles. He derived expression

Tor the interaction energy per unit length of a contact line,

which exhibits sinusoidal undulations in a vertical plane.
The calculated capillary force has a minimum when the two
particles are shifted normally or tangentially with respect to
the contact line. As a consequence, the particulate mono-
layer exhibits elastic response to surface dilatational and
shear deformation$,7,21]

Stamou et al[20] examined theoretically the case of
spherical particles of undulated contact lines and derived
an asymptotic expression for the interaction energy between
two capillary quadrupoles,

4
AW(L) ~ —12r0 H? cos2n — 208) 75 (L > 2r0),

1.4
where H is amplitude of the undulation of the contact line,
whose average radius #g; the anglespa andgg are sub-
tended between the diagonals of the respective quadrupoles
and the line connecting the centers of the two particles
(Fig. 2). The two particles spontaneously rotate to reach an
optimal orientation for which the cosine in Ed..4)is equal
to one (maximal attraction and minimal energy). For exam-
ple, takingo = 70 mN/m, H = 20 nm,r¢/L = 0.3, from
Eqg. (1.4) we calculateAW = 208%T. In other words, we
are dealing with a physically considerable effect.

In the case of two capillary quadrupoles, a more gen-

mann constant and absolute temperature. In other words, theeral expression foA W (L), valid in the whole ranger <

capillary interaction between the particles becomes negligi-
ble. Physically, this means that in the case considered the
particle weight is rather small to create significant interfa-
cial deformation. Nevertheless, in the latter case, interfacial
deformation could be created, but owing to an electric (elec-
trodipping) force, engendered by charges at the particle sur-
face, rather than by the gravity eff§e3—25]

Even in the absence of electrodipping force, interfa-
cial deformations can appear around small particles, if
the contact line on the particle surface is undulated, as in
Fig. 1b [5-7,20,21] For example, this could happen in cases

L < o0, has been derived in RgR1]. This expression pre-
dicts that an adsorption monolayer of particles, which be-
have as capillary quadrupoles, should exhibit considerable
shear elasticity. In general, at close contact between such
two particles, one could hav&W > kT even for nm-sized
particleg[5,21]. This strong capillary interaction can cause a
two-dimensional aggregation and ordering of sub-pum parti-
cles which are captive at a fluid interface. Multibody interac-
tions between capillary quadrupoles have been investigated
by Fournier and Galatolf26] who showed that a system,
composed of a large number of such particles behaves as a

of angular or irregular particle shape, presence of surfacejammed system.

roughness, chemical inhomogeneity, etc. The undulations of
the contact line produce distortions in the surrounding liquid

Experimentally, interactions between capillary quadru-
poles have been examined by Brown ef2F], with photo-
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lithography-fabricated curved discs, having one hydrophilic orientation. For that reason, particles—quadrupoles=(2)
and one hydrophobic side. The contact line is attached will tend to assemble in a square lattice, whereas particles—
to the edge of the curved disc. Different two-dimensional hexapoles# = 3) will preferably form a hexagonal lattice,
packing structures were obtaing2i7]. A variety of struc- with or without voids Fig. 4) [3-5]. Another possibility is
tures were produced in the experiments by Bowden and co-that the particles could form simple linear (chain) aggre-
workers[2—4] on mesoscale self-assembly. Loudet ef28] gateq5,20]. Such structures have been observed experimen-
reported that micrometer-sized prolate ellipsoids, trapped attally [2—4,27]
an oil-water interface, experience strong, anisotropic, and As noted in the beginning, theoretical description is
long-ranged attractive capillary interaction, which can be ex- available for the case of interaction between two capillary
plained if the interfacial ellipsoids are described as capillary charges18,19] and two capillary quadrupold0,21] In
quadrupoles. other words, the theoretical description is incomplete, be-
Theoretically, to describe the meniscus shape for the sys-cause the forces between other types of capillary multipoles
tem depicted inFig. 1b, one has to solve the linearized could be also of interest. For that reason, in the present paper
Laplace equation of capillarity for small meniscus slope, we address the general problem for the interaction between
IVe1? <« 1: two capillary multipoles, A and B, of arbitrary ordersa
9 2 and mpg (ma,mp =0,1,2,3,...). For generality, we in-
V=g (1.5) clude the dipolesiia, mg = 1), which could be realized at
HereV is the two-dimensional gradient operator in the hor- some special experimental conditions. (Dipolar interactions
izontal planexy. Using cylindrical coordinates-(¢), one of nonelectric origin have been found to play an important
can determine the interfacial shape= ¢(r, ¢), around a  role in various physical processg9,30])

single particle with an undulated contact liftg20,21] In Section2 we first consider an integral expression for
~ the capillary interaction energyAW (L), and other basic
o) = AoKo(qr) + A Ko (ar)codm(o — ’ equations. Next, in Se_ct|oﬁ we determine the meniscus
£ 9) oKolgr) mX::l mKn(qr) S[ 0 (PO,m)] shape around two floating particles of undulated contact line
(1.6) by solving the Laplace equation of capillarity in bipolar co-
wereA,, andgg,, are constants of integration, afg, is the ordinates. In SectioAwe derive an analytical expression for
modified Bessel function of the second kind anth order. AW (L) in the general casea, mg > 2 and 2¢ < L < oc.

Equation(1.6) can be considered as a multipole expansion Numerical results foAW (L) are presented in the case of

(a two-dimensional analogue of that in electrostatics). The tWo capillary hexapoles. Convenient asymptotic equations

terms withm = 0,1, 2,3, ... correspond to “charge,” “di-  are also derived. Sectidnis devoted to the interaction of a

pole” “quadrupole,” “hexapole,” etc. capillary chargerza = 0) with a higher order capillary mul-
Stamou et al[20] noted that if the particles are freely tipole (mg > 1). Finally, as an application, in Sectiénan

floating, then the capillary force will spontaneously rotate expression is derived for the surface shear elasticity of an

each particle around a horizontal axis to annihilate the capil- @dsorption monolayer from identical capillary hexapoles.

lary dipole moment (unless the particle rotation is hindered);

seeFig. 3. Therefore, the term witim = 1 in Eq.(1.6) has . )

to be skipped. If the particles are sufficiently light, and the 2 Basic equations

electrodipping forcd25] is negligible, then the zero-order . . ) .

term (the capillary charge) disappears, and the quadrupolar e consider two solid particles, A and B, which are at-

term (withm = 2) becomes the leading term in the multipole tached to a fluid—liquid interface that would be planar in
expansion, Eq(1.6). the absence of particles. The horizontal projections of the

As already mentioned, for multipoles the sign and mag- contact lines at the particle surfaces are assumed to be cir-
nitude of the capillary force depend on the particle mutual cumferencesCa andCs, of radii ra andrg, respectively.

We assume that the contact lines are undulated in a vertical
q ' direction,
b // ta = Hacodma(p — gp)],
— 8 = Hg cogmp(p — ¢B)], (2.1)
\ﬂ/ where Hy and Hg are the undulation amplitudes;a
and mp are the respective multipole ordersif, mp =
‘7 1,2,3,...); ¢ is the running azimuthal angle, which pro-
/// vides parameterization of the respective circumferefie,
» or Cg; and the anglega andgg characterize the rotation of
Fig. 3. The capillary force, due to the interfacial tensionspontaneously ~ the respective particles around a vertical aXiS. 5@65) _
rotates a freely floating particle to annihilate its capillary dipole moment The meniscus shape around such a particle in isolation
(m=1). can be found by solving the Laplace equation, @), us-
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(a)
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Fig. 4. 2D arrays formed by capillary quadrupoles= 2) and hexapolesi{ = 3); the signs 4" and “—" denote, respectively, positive and negative “capillary
charges,” i.e., convex and concave local deviations of the meniscus shape from planarity at the contact line. (a) Quadrupoles form tetrgopeiadlose-
array[21,27] Hexapoles could form (b) close-packed array; (c) hexagonal array with {@id§ (d) Linear aggregates made of quadrupd®&27] In
contrast with the electric charges, two similar capillary charges attract each other, while the interaction between opposite capillary epatsjes.is r

(b)

Fig. 5. Sketch of two “capillary hexapoles,” A and B, separated at a dis-
tanceL. (a) Initial state. (b) An arbitrary mutual orientation characterized

by the anglega andgg; Ca andCpg denote the projections of the respec-
tive contact lines, of radira andrg, on thexy-plane;n is inner running
unit normal toCa andCg. The anglev of the bipolar coordinates varies in
opposite directions alonga andCg.

ing Eq. (2.1) as a boundary condition. Thus, we obtain a

special case of Eq1.6).

Kmy (qr)

Y =A,B.
Kmy(qu)

(2.2)
For the air-water interface, we haye® = 2.7 mm. On the

Sy (r,9) = Hy cogmy (¢ — ¢y)].

other hand, our typical particle sizes and interparticle dis-

tances are much smaller. Then, fpor < 1, we can use the
asymptotic form of the modified Bessel functioki;, (x) ~
1/x™ [31,32] Correspondingly, Eg2.2) acquires the sim-
pler form

my

-
Cy=HBrYTY comy(p —ey)]. Y =A,B. (2.3)

The meniscus excess surface energy, due to the deformation
z=1¢(x,y), is equal to the product of the surface tension,
and the excess surface af&8,20],

W(L) =0 f ds[(1+1v¢1D)Y? - 1]

Sm
~ %/dswuz,
Sm

whereo is the interfacial tensionSy, is the orthogonal pro-
jection of the meniscus on the-plane, and dis the surface
element.

In the limiting case of two noninteracting particles,
A and B, which are separated at a long distances> ra,
re, W(L) can be obtained by calculating the integral in
Eqg. (2.4) separately fora and¢g and summing the results.
The differentiation of Eq(2.3)yields

2my

(2.4)

Ve |2 = m%H)gr;);T. 2.5)
Furthermore, we have
o
/ |ng|2ds = aniH)%rﬁmY / ,,zm—j;+1 dr
Sy ry
= nmyH}g (2.6)

(my > 1). Combining Eqs(2.4) and (2.6) we obtain the
meniscus excess surface energy in the limiting dase oo:

o

W (00) = 7(mAH,f + mgHB). (2.7)

In the special case afa = mp = 2, Eq.(2.7)reduces to the
expression for capillary quadrupoles, derived in R2d].
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Now, let us return to the more general case, when the
interfacial deformations around the two particles overlap.
As discussed after Eq2.2), we are dealing with the case
gr < 1, in which Eq.(1.5) can be written in a simpler form:

v2¢ =0. (2.8)

Note that Eq.(2.3) satisfies Eq(2.8). Next, we make the
transformation:

V- (¢VE) = (VE)- Ve +¢V2e = |V, (2.9)

where at the last step we have used E48). Further, we
combine Egs.(2.4) and (2.9)and apply the Green theo-
rem[33],

o
W(L)=§/dsv~(§v§)
Sm

(2.10)

-2 fdzn-w;),

Y=AB¢,

where d is the linear element along the contows and
Cg (Fig. Bb) andn is an inner unit normal to the respective
contour. Finally, the energy of capillary interaction is

AW(L) = W(L) — W(c0), (2.11)

whereW (L) and W (co) are given by Eqg(2.10) and (2.7)
respectively.

3. Meniscus shapein bipolar coordinates
3.1. Introduction of bipolar coordinates

To obtain explicit expressions for the meniscus shape,
¢(x,y), and the capillary interaction energg&W (L), we
will use bipolar coordinates in they-plane, which corre-
spond to the geometry of the system; see, e.g., R4s35].
These coordinates, denote@ndw, are defined through the
following set of equations:

x = x sinh(t), y = x Sin(w),
x =a/(cosh(t) — cogw)). (3.1)

The linest = const. andv = const. are two families of mu-
tually orthogonal circumferencefi@. 6). In Eq.(3.1), a is
a parameter related to the radii of the two contact lings,
andrg, and to the distance between the two particles,

a’= m[L2 — (ra +8)?][L? — (ra — r8)?]. (3.2)
The projections of the two contact lines on the-plane,
Ca and Cg, correspond tor = —za and r = g, respec-
tively, where
L2 + rg\ — ré
=arccosh ————=|,
e ( 2Lrpa >

125

yk

T==T)

Fig. 6. Bipolar coordinatest(w) in the xy-plane. The coordinate lines
T = const. andw = const. represent two families of mutually orthogonal
circumferences. The contact line projectiody, and Cg, correspond to
T=—1p andr = 1g.

L? + ré — rﬁ
= — 5 A 3.3
B arccosl( Lrg ) (3.3)
arccoslix) = In[x + (x2 — D¥?]. (3.4)

Other useful relationships, which follow from Eqg&.2)
and (3.3) are

sinh(za) = % sinh(tg) = % (3.5)

In bipolar coordinates, the linearized Laplace equation of
capillarity, Eq.(2.8), acquires the form

2 9%
9t2  dw?
where ¢ = ¢(z, w), is the deviation of the fluid interface

from planarity. We will seek the solution of E(B.6)in the
form of a Fourier expansion:

-0 (3.6)

sinin(za + 7)1

¢ = Ha ) _[Cucostnw) + Dy sintne)| o=

n=1
> , sinhn(tg — 1)]

(3.7)

3.2. Determination of the unknown coefficients

To determine the unknown coefficient§,,, D,, E,,
and F,,, we substitute Eq(3.7) in the boundary condition,
Eq.(2.1). Thus we obtain

o0

codmg(p — ¢B)] = Z[Cn cosnw) + D, Sin(nw)]
n=1

att = 1, (3.8)
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codma(p —gn)] = Z[E,, cognw) + F, sin(nw)]
n=1

att = —1a. (3.9)

To proceed further, we need a connection between the angles = " Z

¢ andw. For simplicity, we choose the direction of increase
of angleg to be the same as @f, that is clockwise for the
circumferenceCa, and anticlockwise folCg. Next, in the
relationship sitp) = y/ry, we substitutey from Eq. (3.1)
andry from Eg.(3.5), thus, we obtain

sinh(ty) sin(w)

sin(y) = cosT(y) — Cog@) (Y =A,B). (3.10)
From Eq.(3.10)we deducg35]
cosig) = cosh(ry) coqw) — 1 (Y —A.B). (3.11)

cosh(ty) — coqw)

Equationy3.10) and (3.11)ndicate that sify) and cosp)
are, respectively, odd and even functionswofHence, we
have

e

/ cogme) sin(nw) dw =0,
P

/ sin(mg) cognw) dw = 0.

—TT

With the help of Eq.(3.12) from Egs.(3.8) and (3.9we
derive

(3.12)

Cﬂ = CquBQDB)A(nv mp, tB)a

En = COgmA(pA)A(’/h mAa .’:A)a
Fy =sin(magpa) B(n, ma, ta), (3.14)

where the functiond\ (n, m, ty) and B(n, m, ty) do not de-
pend on the anglegs andgg, and are defined as

T

A(n,m,1y) = % / cogme) cognw) dw,

-7

(3.15)

T

B(n,m,ty) = % / sin(me) sin(nw) dw,

-7

(3.16)

whereg is related tow by means of Eq(3.10) In Appen-
dix A, we prove that

A(n,m,ty) = B(n,m, ty)

1 dmfl 1 .
~ (m—1!dzm1L [" Q- B2)"] i (3.17)
B=exp—ty) (¥ =A.B). (3.18)

For computations, it is more convenient to carry out the
differentiation in Eqg.(3.17) and to present the result as a
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polynomial (seéAppendix A),
A(n,m, ty)

min(m,n)

(=" m+n—k—1)!
(m—k)!(n

'Bm—i-n—Zk

o . (3.19)

where mlr(m,n) denotes the smallest @f andxn. Finally,
in view of Egs.(3.13), (3.14), and (3.17Eq.(3.7) acquires
the form

¢ =Ha Z A(n,mp, Ta) COSnw — ma@A)
n=1
sinhn(tg — 1)]
sinhn(za + 78)]

o0
+ Hp Z A(n,mp, 18) COSnw — mpys)
n=1
sinhn(ta + 7)]

: A 3.20
sinfn(ta + t8)] (3.20)
whereA(n, m, ty) is given by Eq(3.19)
4. Energy of interaction between multipoles
4.1. General expression
In bipolar coordinates, E¢2.10)takes the form
r ad
Wy =2 / do¢ (0, 78)
2 0T |1y
-7
r a
o ¢
-5 / dw ¢ (w, —TA)E . (4.2)

-7
Next, from Eq.(3.20) we calculate the derivatives /dz,
which is then substituted into E¢4.1). The result can be
obtained in a relatively compact form with the help of the
identities
T
/cos(ka) —mygy)coSnw —mygy) do = w8 p, (4.2)

-7
b/

/ cogkw — magp) COSnw — mpeg) dw
-7
=1 COmByYB — MAQYA)Sk,n- (4.3)

Thus, we derive the sought-for expression for the surface ex-
cess energy (L),

W(L)
p—— HZSA + H3Sg — Ha Hpg G cOSmpps — maga),
(4.4)
where

_Z cotn(ta + 18)|A%(n, my, 1y) (¥ =A,B),
n= l (4 5)
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GEinA(n,mA,rA)A(n,mB,rB)_ 4.6)
n=1

sinfn(za + t8)]

The energy of capillary interactiojyW (L), can be obtained
by substitution of Eq(4.4)into Eqg.(2.11) This in principle,
solves the problem, becaugdn, m, ty) is a known func-
tion, given by Eq(3.19) The derivativeF = —dW (L)/dL,
gives the interaction force. Fatp = mpg = 2, Eq.(4.4) re-
duces to Eq. (3.17) in Ref21]; note that (by definitionpa
in the latter reference 8 — @p in the present paper.

In the case of close contadt,— ra +rg, from Eqs.(3.2)
and (3.5we obtaina = 0 andta = g = 0. At a first glance,
it could seem thafy andG, given by Eqs(4.5) and (4.6)
are divergent in this limit. However, it turns out that for
L — ra + rg, the functionsSy andG take finite values, be-
cause the numerators in Edg.5) and (4.6)}end to zero.
The respective limiting values ¢f andG can be computed
numerically.

Equations(4.4)—(4.6) are applicable to calculation of
the interaction energy between two capillary multipoles for
everyma,mp > 1, and forra + rg < L < co. The condi-
tion ma, mp > 1 is necessary, becausesit, = 0 (capillary
charge), the integral in Eq2.6) is divergent. For this rea-
son, in Sectiorb we separately investigate the interaction of
a capillary charge with capillary multipoles of various or-
ders.

4.2. Asymptotics for large distance L
For large interparticle distances, we have

ry
pr=exp—m)~ - <1 (Y =AB); (4.7)
see Egs(3.3) and (3.4)With the help of Eq(4.7), one can
determine the leading terms in the asymptoticsSgf Sg,
andG for largeL, see Eqgs(4.5), (4.6)andAppendix B

ma 2 rimA ré
SA:7+mAL2mAﬁ s, (4.8)
2 2mp
_mB 2'A B
SB—7 mBﬁLZmB‘F"', (49)
ma _mp
_~I'n B
G=Go o s T (4.10)
whereGy is constant (independent &f):
min(ma,mg)
2(—1)"ATmB g A lmp)
Go= (ZHTATEmalme (4.11)

= (mp —n)!(mg —n)Inl(n — !
Values of Gg corresponding to differentza and mpg are
listed inTable 1

One can check that the first terms in EE8) and (4.9)
mpa/2 andmp/2, after substitution into Eq4.4), give the
expression foW (c0), EqQ.(2.7). Then, forjma — mg| < 1,
the leading term i\ W for L — oo comes from the function
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Table 1
Values ofG for differentm andmp
ma mp Go
2 2 12
2 3 —24
2 4 40
2 5 —60
3 3 60
3 4 —-120
3 5 210
4 4 280
4 4 —-560
5 5 1260
G, see Eqgs(2.11), (4.4), and (4.10)
mp _mp
AW (L)~ —16GoHa Hg COSmagp — magg)—2— B
0f1AI1B APA B¥B L(WA‘H”B).
(4.12)

For two quadrupolesya = mpg = 2, we haveGo =12, and
Eq.(4.12)gives Eq(1.4)as a special case féfpa = Hg = H

and ra = rg = r¢. For two hexapolesyip = mp = 3, we
haveGg = 60, and Eq(4.12)reduces to

6

AW(L) ~ —60r o H? co3¢pa — 3@% (L > 2r).

(4.12a)

If the particles are free to rotate around a vertical axis, the
orientational anglega andgg will spontaneously reach ap-
propriate values, for which the cosine in €4.12)is equal
to 1 for Go > 0 (or —1 for Gg < 0), and thus to reach
the minimal value ofAW (the maximal attraction) for the
givenL.

In Table 2 we give the form of Eqi4.12)for some special
cases, corresponding to differens andmg, including the
case withma = 0, where one of the two interacting particles
represents capillary charge. The latter case is investigated in
Sectionb.

4.3. Example: interaction between two hexapoles

To calculate the exact dependengdV (L), we used
Egs. (4.4)—(4.6) together with Eq.(3.3). Fig. 7 shows
AW (L) curves for two identical particles—hexapolé& =
Hg = H andra = rg = rc. The different curves correspond
to different values of the phase angle,

A =3pa — 3¢B: (4.13)

seeFig. Bb. For 5 < A¢ < 25°, the dependencAaW (L)
has a minimum; i.e., the interaction is attractive at long
distances and repulsive at short distances. In contrast, for
0 < Agp < 5° the interaction is attraction at all distances.
This result qualitatively resembles the results for two cap-
illary quadrupoleg$21].

The global minimum oA W (maximal attraction), which
corresponds tahg = 0 andL = 2r¢, is

AWmin ~ —0.6(ro H?). (4.14)
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Table 2
Asymptotic expressions fak W (L) for some values ofip andmp
Type of interaction in, mp) Interaction energA W (L) for ra, g < L < ¢~ 1
Charge—quadrupole (Q) —%(}' Op Hg cod2(¢p — n)](’TB)Z
Charge—multipole (Onp) —ZoQaHgcodmp(ps — m)1(£)"B
2
Dipole—quadrupole () 4o Hp Hg codpp — 2¢B] %ﬁ
2
Quadrupole—quadrupole @ —1270 Hp Hg co92(pp — ¢B)]<’AL;§)
2.3
Quadrupole—hexapole (2 240 Hp Hg cOS2¢pA — 3¢B) rﬁ%
3.3
Hexapole—hexapole 3) —60r0 Ha Hg c0S3pa — 3¢B) ’/2%
3.4
Hexapole—octupole (@) 12070 Hp Hg c0S3pa — 4¢B) rAL;E
WIA )ﬂB
Multipole—-multipole A, mp) —Gomo Hp Hg COSmp ¢a _mbB)%
_ 08 S . .
% able shear elasticity in adsorption monolayers of particles—
£ 04l hexapoles. Expression for the respective modulus of shear
-y 20° elasticity is derived in Sectiof.
g
= 0.2 4
=
§ oo : .
g e 5. I_rlllteractloln_betlween acapillary chargeand a
o Illary multipole
& 02 capiiiary p
s 10° . .
£ 04 5.1. Meniscus profile
E 5
9 e lY

We consider again two solid particles, A and B, which
are attached to a fluid—liquid interface. The horizontal pro-
jections of the contact lines at the particle surfaces are as-
Fig. 7. Energy of interaction between two capillary hexapoleg, & sumed to k?e circumferencesa and CBj of rac'ill TA anq
mg = 3), AW(L), scaled withro H?, plotted vSL/(2rc). The lines are rg, respectively. We assume that particle A is a capillary
calculated by means of Eq§t.4)—(4.6) and (3.3jor two identical parti- charge, while particle B is a capillary multipole of order
cl_es: Hp =Hg =H, rp =rg =rc. The differgnt curves correspond oy (mg =1, 2,3,...). As before, the meniscus shape is de-
different values of the phase angiey, denoted in the figure. The dashed scribed by the equatio;n: ¢(x,y). At the contact lines we

line represents the asymptotic expression for large interparticle distances, . -,
Eq.(4.Fl)2a) for Ag — o_y P P 9 P have the following boundary conditions:

1.0 1.2 14 1.6 1.8 20
Dimensionless distance, L/(2r:)

lca = Ha, ¢lcg = Hecogma(p — ¢B)]. (5.1)
For o = 70 mN/m, H = 10 nm, andT = 25°C, from o )
Eq. (4.14)we calculateA Wmin = —321&T. This result in- To solve the problem, in this section we use the superpo-
dicates again that the energy of this type of capillary interac- Sition method: i.e., we try the solution in the form
tion is very large compared to the thermal enekd@y; even . 59
for undulations of amplitude 10 nm. It is worth noting that ¢ =Catie (5-2)

for a givenH, AWmin does not depend on (thatis onthe  whereza and¢g satisfy the linearized Laplace equation of

particle size), see E@.14) In other words, for the samié, capillarity,
the energy of capillary attraction at close contact is the same
for hexapoles of radius, say, 100 nm and 10 um. V2 = q2ea, V28 = ¢%¢a, (5.3)

The lowest dashed line iRig. 7 is calculated with the
asymptotic formula, Eq(4.12a) for ma = mgp = 3 and
Ag = 0. In the figure it is seen that the asymptotic for-

see Eq(1.5), and the boundary conditions

mula becomes sufficiently accurate for(2r¢) > 1.5. Note, talea = dac=Ha. (5.4)
however, that this asymptotic formula cannot describe the ¢g|cg = ¢B.c = HB cos{mB(cp — (pB)], (5.5)
non-monotonic behavior of AW (L) for 5° < Ag < 25°. _ _

¢alce = ¢Blca =0. (5.6)

Due to the cosine in Eq4.4), at fixed L, the function
AW (Ag) has a pronounced minimum @t = 0. As in The boundary conditiongs.4)—(5.6)guarantee the fulfill-
the case of capillary quadrupolgl], the existence of such  ment of the boundary conditiofb.1). In the casejL « 1,
a minimum is the reason for the appearance of consider-the solution for¢g, which satisfies Eqg5.5) and (5.6)can
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Let us first calculate the cross-interaction integral in Eq.
(5.12) defined as

Ing = ‘(ﬁ d (n- Vip)iB.c. (5.13)
Cs

In the calculations we will use two sets of polar coordinates
in the xy-plane, pa, ¥a) and (og, ¥B), with respect to the

Fig. 8. Two sets of polar coordinates in the-plane, pa,ya) and two particles Fig. 8). A helpful relationship between these
(pB, ¥B), associated wqh the two particleB. |s_ an arbitrary point |_n the coordinates is given by the cosine theorem:
plane.Cp and Cg are circumferences of radiug, andrg, respectively,

representing the horizontal projections of the respective contact lines. ,OE\ — L2 + pé + 2Lpg COSYB. (5_14)

In terms of these coordinates, we can express(kEG3)in

be determined by substitutinga = 0 in Eq.(3.20) the form

n=1

sinhn(za + 7)]
. (5.7) where we have substitutegk . from Eq. (5.5) and have
sinh[n(za + tB)] _ € .
) used thatza is an even function ofyg. Further, with the
On the other handia can be presented in the form help of Eqs.(5.8) and (5.14)we calculate the derivative in

Eq.(5.15)up to terms on the order @f L)?:
ta = OaKolgoa) + ¢8>, Ha= QaKo(gra), (5.8)

_ | | y a _ ), 9Kolapa) doa _ _ On
where QA _|s the capﬂ!)erlrry chargepa is a p_osmon vector e A doa  ops pﬁ
shown inFig. 8 and¢,”" is a small correction of the lead- _ _ _
ing order solution. The role gf$°", which also satisfies the ~ With pg =g and pa given by Eq.(5.14) we substitute
Laplace equatiof5.3), is to guarantee the fulfillment of the ~ Ed. (5.16)into Eq.(5.15)and carry out the integration. The

00 2
¢ = Hs ZA(”’ s, T8) COSnw — me¢s) In = — Hprg COSmpyB) / COS(mBI/fB)g%AB dyg, (5.15)
0

(o + L cosyp). (5.16)

boundary conditior(5.6): result reads
ra®
2, =0, (8", = —OnKo(gon). (5.9) InB = —7 QaHg coma (¢ — )] L?HB. (5.17)
Further, using E((5.8), we obtain
5.2. Interaction energy
% di(n-VEp) =21 Qa + Ipa, (5.18)
In the considered caseL « 1, we can use Eq$2.10) Ca
and (4.1)for the meniscus excess surface eneigyL). In where
view of the latter two equations, using E¢S.4) and (5.7)
one can present the integral ov&x in the form Inp = 56 di (n . Vg“,ﬁ""). (5.19)
Ca

With the help of Eq(5.14) in the boundary condition &g,

Fdln-Vea+calnc=tad Vo). (510
Ca Ca Eq.(5.9), we expand in series fofL <« 1 andrg/L < 1:

Using the approach from Sectidril, we express the integral ggorr s
overCg in the form A = —Ko(gL) + — cosyg
Oa L
2
?gdl [N-V(@a+B)]|Be= yg dl (N V¢a)eB,c + 2m HE S, — %(%3) cos2y) +--- atCe. (5.20)
Ce Ce (5.11)

_ _ Using Eq.(5.20) we obtain;{°"" as a solution of the Laplace
where Eqgs(5.5) and (5.7have been usedy is defined by equation(5.3), in a form analogous to the multipole expan-
Eq.(5.5). Finally, from Eqgs(2.10), (5.2), (5.4)-(5.6), (5.10),  sjon, Eq.(1.6).

and (5.11)we obtain

Ko(gL
" =—0n olgL) Ko(gps) + QAr—Br—BCOSwB + e
Ko(grs) L pB
(5.21)

) One could check that the substitution of H§-21) into
+ 2m Hg SB. (5.12) Eq. (5.19)yields Iaa = 0, within an accuracy?[(ry /L)°].

2
;W(L) = Hp f di(n-Vep) + % di(n-Via)ie.c
Ca Cs
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Using Eqgs(5.10), (5.11), (5.13), (5.17), and (5.18)e can
rewrite Eqg.(5.12)in the form

W(L)
o

= Q3Ga + HES
mp

1 r
-5 OnHp CO{mB((pB — 7'[)] L?nB , (5.22)

whereGa = Ko(gra) + O[(ry/L)°]; see Eq(5.8).

5.3. Discussion

In fact, the last term in Eqg4.4) and (5.22)which de-
pends on the angles of mutual orientatipn, and¢g, give
the essential part of the interaction between the two capillary
multipoles. The other terms, proportional §g(L), Sg(L),
andGa (L), originate from the “rigid” boundary conditions
imposed at the contact lines; see, e.g., E§s1)—(5.6) For
example, the requirememnh |c; = O leads to the appear-
ance of a series of correction multipole expansiorCat +
see Eq(5.20) However, if the particle B is freely floating,
then the mean level and slope of its contact line will ad-
just to comply W_Ith the mean elevation and slopegafoa) . Fig. 9. Hexagonally packed layer of capillary hexapoles, which is subjected
at Cg. To take into account such effects of “contact-line o shear deformation along theaxis. L1 is the center-to-center distance
adjustment,” one has to carry out additional theoretical in- between two neighboring particlgss is the shearing angley is the angle

vestigation, which is out of the scope of the present article. of rotation of each particle due to the shear deformation; the other notations
are explained in the text.

6. Shear elasticity of monolayer from hexapoles the first neighbors in the particle monolayer:
6.1. Basic equations 1 _U(Ly)

| o | | .Q~2N1U(L1)— «/§L%
Here, we give an application of the derived equations to
derive an expression for the shear elasticity of a monolayer Here, N1 is the number of particles per unit area of the ad-
of particles, which behave as capilldmgxapoles. Such parti- sorption monolayerf; is the distance between two neigh-
cles have been investigated experiment@h4]. Ourresults ~ boring particles Eig. 9); and U (Ly) is the interaction of a
represent an upgrade of REE1], where analogous expres- given particle in the monolayer with all of itérst neigh-

(6.2)

sions for capillaryquadrupoles have been derived. bors. The multiplier 12 in Eq. (6.2) appears because we
We consider an adsorption layer of capillary hexapoles, must account only once for the interaction for each pair of
which is subjected to shear along theaxis; seeFig. 9. particles. We have also used the fact that for hexagonal pack-

Following the thermodynamic approach of Landau and Lif- ing, the area per particle in the monolayedis = 1/Ny =
shitz[36], one can determine the shear elastic moduligs, (\/§/2)L§. Having in mind thatu,, = ¢s/2, we combine
by differentiation of the free energy of the systefh, with Eqgs.(6.1) and (6.2)o obtain

respect to the shear deformation (see @dl) in Ref.[36]),

1 o
- 2uyy 8uyx’

P 2 1 3U(Ly
S=—F7Z=7%5 . -
(6.1) V3L2ps d¢s

During the shear deformation, depictedrig. 9, the neigh-
boring “columns” of particles undergo mutual displacement
along they-axis. Thus, the right-hand side column is sifted
at a distance\y with respect to the central columFRig. 9).
The shear angle is

(6.3)

Es

where the coefficient of surface shear elastidity, is a 2D
analogue of the coefficient of Lamg, in Ref.[36]. £2 is free
energy (or grand thermodynamic potential) per unit area of
the adsorption layer. For small shear angles, the relative dis-
placement along the-axis, u,, = (du,/dx)/2, is equal to
vs/2, whereyps is the shearing angle. For not-too-small par- Ay Ay 2Ay

ticles, the entropy contribution if2 is small in comparison  ¢s~ — = . = )
) S . L . A L1 sin(60°

with the contribution from the particle—particle interaction o 15In60") /3L,

energy. Then an approximate expressionsiican be ob-  whereAx is the distance between the two columns. On the

tained by taking into account only the interactions between other hand, in the derivations below we will employ the aux-

(6.4)
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iliary angle@, which is defined as follows (sé€g. 9):

o~ Aysin(60°)  +/3Ay

I 2L, (6.5)
Comparing Eqs(6.4) and (6.5)we obtain
3
0= 25 (6.6)

6.2. Interaction of a given particle with itsfirst neighbors

The interaction energy/(L1), of the central particle in
Fig. 9with its first neighbors can be expressed in the form

U =2(W1+ W2+ Wa), (6.7)

where W1, W», and W3 is the energy of interaction of
the central particle, respectively, with particles 1, 2, and 3,
shown inFig. 9. The multiplier 2 in Eq(6.7)accounts for the
fact that the energy of interaction with the remaining three
neighbors is the same as with the particles 1, 2, and 3, ow-
ing to the symmetry of the system. For identical capillary
hexapolesya = mp = 3, Eq.(4.4)yields

W(L1) = o H?[2S1 — G1cos3pg — 3pa)]. (6.8)
where

H = Hp = Hg, S1=38a(L1) = Ss(L1),

G1=G(Ly). (6.9)

As noted in Ref[21], the shear leads to a rotation of the
hexapoles to a given angle (with respect to their initial ori-
entation), which will be denoted hyy. In generalgpy # ¢s.
Since the particles have identical environment, it is natural to
assume that the angle of rotatiasy, is the same for all of
them. Following Ref[21], we will find ¢y by minimiza-
tion of the total interaction energy between the particles,
U(L1, ¢s, pH):

U
I ¢s,L1

First, let us consider the interaction of the “central par-
ticle” with “particle 1” (Fig. 9). Both particles are rotated
at an anglepy, counterclockwise. If we take as reference
mark the negative “capillary charge” denotedHig. 9, then
for the central particle we hawgs = (5/6)7 — ¢n. In ad-
dition, for particle 1 we haveg = (5/6)7 + ¢y. Conse-
quently, Ap = g — pa = 2¢H4. Substituting the latter value
into Eq.(6.8), we get

(6.10)

W1 =mo H?[2S1 — G1cos6pn)]. (6.11)

Second, let us consider the interaction of the central parti-
cle withparticle 2 (Fig. 10. Taking as a reference marker the
positive “capillary charge,” denoted irig. 10, for the cen-
tral particle we havea = (5/6)7 + 6 — ¢y. In addition, for
particle 2 we haveg = 7 — ¥ + ¢H, Where the angle is
also shown irFig. 10 From triangleO O, P we obtainy =
m/2—(wr/3—0). Asaresult, we getg =7 —7/6—0 +¢H.
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YA

Fig. 10. Calculation of the capillary interaction between the central par-
ticle and particle 2 inFig. 9. From the triangleO O;P one sees that

¥ + 60° — 0 = 90°. The other notations and details are explained in the
text.

Consequentlypg — pa = 20 — 2¢y. Substituting the latter
value in Eq.(6.8), we get

Wy = o H?[2S1 — G1cos6pn — 69)]. (6.12)

In a similar way, it can be proved théits = W». Hence, in
view of Eqs.(6.11) and (6.12)Eq. (6.7)acquires the form

U =270 H%[6S1 — G1c096¢) — 2G1 Co6pH — 69)].

(6.13)
Next, to determinepy, we substitute Eq(6.13) into Eg.
(6.10) In this way, using the approximation &) ~ x (for
x < 1), we obtain

2 1

= —9 = — s
PH 3 Z‘PS

where at the last step we have employed &®). The sub-
stitution of Eqs(6.6) and (6.14)nto Eq.(6.13)yields

(6.14)

U =20 H%[651 — G1c093ps) — 2G1¢0(3/2)¢s)].

(6.15)
Equation(6.15) gives the explicit dependence 0f on ¢s,
which, after a substitution in Eq6.3), finally leads to an
expression for the surface shear elasticity:

Es=18V3rG10o(H/L1)>. (6.16)

In general, we havé. 1 > 2r¢, because the electrostatic re-
pulsion between the particles across the nonaqueous phase
could keep them separated at a certain distance [g7a88].

Thus, G1 = G(Lj1) has to be calculated from EqE3.3),
(3.19), and (4.6)If such repulsion is missing, and the par-
ticles are in close contact, thehy — 2r¢, 7y — 0, and
Eq.(4.6)gives a finite limiting value folG 1, which has been

determined by us numerically:
G(L1=2r;) =260816.... (6.17)

Substituting the latter value fa%1 into Eq. (6.16) we get
the value of the shear elasticity at close contact between the
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particles: The results of this paper could be helpful for the un-

5 derstanding of some phenomena related to aggregation and
Es=255460 (H/2rc)". (6.18) ordering of particles adsorbed at a fluid interface, and for
For example, substituting = 50 mN/m andH /(2r¢) = 0.1, the interpretation of the rheological behavior of monolay-
from Eq. (6.18) we obtainEs = 127.7 mN/m, which is a ers from nonspherical particles. Related research fields are
considerable value. Such monolayer should behave as a 20he particle-stabilized (Pickering) emulsions and the two-
elastic solid, rather than a 2D fluid. (For a fluiEig = 0 by dimensional self-assembly of microscopic particles.
definition.)
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contact-line undulations produce distortions in the surround-
ing liquid interface, whose overlap engenders capillary inter-
action between two adsqrbed partlclésg( 1b). The convex Appendix A. The coefficients A, m, 7) and B(n, m, 7)
and concave local deviations of the meniscus shape from pla-
narity can be theoretically treated as positive and negative
capillary charges, which form capillary multipoles. Corre-

spondingly, the meniscus shape can be expressed as a mult
pole expansion, Eq1.6). In general, this expansion involves

Here, our aim is to determine the coefficiedts:, m, ty)
andB(n,m, ty), i.e., to calculate the integrals in E¢8.15)
and (3.16)For this purpose, let us first consider the auxiliary

multipoles of various orders. For this reason, it is impor- ntegral

tant to have at our disposal equations describing the interac- 1 (az — D™

tion between different modes. Until now, theoretical expres- 1(n,m,a) = 5 ?5 z”‘l—m dz =0, (A1)
sions have been derived only for the charge—chftg¢l9] l\z|=1 @=2)

and quadrupole—quadrupd0,21]interaction energy. As a

generalization of previous studies, here, we derive expres-Wherem > 0;n > 1; a = exp(ry) > 1; i is the imaginary

sions for the interaction between two capillary multipoles Unit; z is a complex variable; and the integration is car-

of arbitrary order; see Eqé4.4)—(4.6) Simpler asymptotic ~ fied out over the unit circumferencie| = 1, in the complex

expressions for the interaction energy at not-too-short inter- Plane—se&ig. 11 The integral in Eq(A.1) is equal to zero,

particle distances are also derived; see F442) and (5.22) because the integrand has no singular points inside the area
Numerical results are presented for the energy of inter- encircled by the contour of integration. Next, let us substi-

action between two capillary hexapoles as a function of the tute

interparticle distancel, and phase angle\g, seeFig. 7.

Depending om g, the interaction could be either monotonic ¢ = €XPiw) atfz|=1. (A.2)

a_ttraction, or monoto_nic repulsion,_ or it is attraction at Iong With the help of EG(A.2) we obtain

distances but repulsion at short distances. The capillary in-

teraction energy scales asy H? (o—interfacial tension, az—1 «cosw—1+iasinw

H—undulatiorrl1 amplitudche). T)r/]piCﬁIIy, foIH > 5 nm, tL\is 0—2z  o—cosw—isine

energy is much greater than the thermal enérByFor this 2 2 .

reason, the forces between capillary multipoles certainly in- = (a2 +Dcosw — 2« i 2(a —Dsine .

fluence many phenomena with particles, particle monolayers af—2wcoso+1 = a°—20cosw+1 (A3)

and particle arrays at fluid interfaces, although experimen- '

tally, these effects are still insufficiently explored. Tm(z)4
Based on the results for the interaction energy, one can

predict also the rheological behavior of adsorption monolay- \<

lz=1
ers from capillary multipoles. As an illustration, in Sect®n

we derived an expression for the surface shear elastitity, _1Q/1 Re=(2)

of a monolayer from capillary hexapoles, H§.16) Ow-

ing to the pronounced angular dependence of the interaction
energy, the adsorption monolayer of capillary multipoles ex-
hibits a considerable shear elasticity, and should behave as @ig. 11. The integration in EqA.1) is carried out over the unit circumfer-
2D elastic solid, rather than 2D fluid. ence,|z| =1, in the complex plane.
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Having in mind the definition oy, and Eqgs.(3.10) and For n < m, the minimal possible power ¢f, in the right-

(3.11) we bring Eq(A.3) into the following simpler form: hand side of Eq(B.1), corresponds to the maximal value
az—1 . of k, which isk = n. Then, forg « 1, the leading term in
— = expie). (A.4) Eq.(B.1)is
Further, we substitute EqéA.2) and (A.4)into Eqg. (A.1), |
and derive B"A(n,m, B) = (1" — B (n<m).
1 T (m —n)!n!
I(n,m,a) = o / eX[{i(nw—l—m(p)] dw (B.2)
JT
—-7 For n > m, the maximal value ok is k = m, and thus the
1 minimal possible power of in Eq. (B.1) is g2~ « .
=5 / cosnw + me) dw. (A.5) Hence, the leading term in the asymptotics of E#1) is
4 that given by Eq(B.2).
Comparing the definitions, Eqg3.15) and (3.16)with Eq. For fy = exp(—ty) ~ry/L <1, the general term in the
(A.5), we obtain Z(n, m,a) = A(n, m, ty) — B(n, m, ty). sum in Eq.(4.6) can be presented in the form
However, Eq(A.1) shows thatl (n, m, ) = 0. Hence,
nA(n,ma, ta)A(n, mg, 1)
A(n,m,ty)=BMn,m,ty) (n=>1). (A.6) Sinfin(za + 8)]
See also E(3.17)in the main text. Next, let us consider the noon
gral
L, —m. o) = —— 7{ n—1 (@ —2)" dz A7) The substitution of Eq{B.2) and (B.3)into Eq.(4.6) leads
o (az—1m ' to the asymptotic expression fat, Eq.(4.10)
|Z‘ 1 What concerns the asymptotics 8f and Sg for L —
wherem > 1 andn > 1. In Eq.(A.7), the integrand has a oo, we could not find a general analytical derivation, like
pole ofmth order atz = 1/«, inside the unit circlez| < 1. that for G above. For this reason, we expanded Eg5)
Then, with the help of the residuum theorem, we obtain in series forfy <« 1 by means of a computer program for
aoq (@ —2)™ mathematical transformations, “Mathematica 3.0” (Wolfram
I(n, —m,a)= Zsle/i{z (@z—17" } Research Inc.). In this way, we established the validity of
1 gn-1 Eqgs.(4.8) and (4.9¥or ma andmg taking any of the values
n—1 m
= A.8 1,2,3,4,and 5.
(m — 1)!0{’" dZm_l[ (O( Z) ] =L/a ( )

Next, we replacen with —m in Eq. (A.5) and compare the
result with Egs(3.15), (3.16), and (A.6)Thus we find

I(n,—m,a) =AM, m, ty). (A.9)

The combination of Eqs(A.8) and (A.9)yie|ds Eq.(3.17) [1] M. Yamaki, J. Higo, K. Nagayama, Langmuir 11 (1995) 2975-2978.
in the main text. Further, in E(ﬂAS) we introduce the vari- [2] N. Bowden, A. Terfort, J. Carbeck, G.M. Whitesides, Science 276

A - ) N ; (1997) 233-235.
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