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CHAPTER  11

CAPILLARY BRIDGES AND CAPILLARY-BRIDGE FORCES

The importance of capillary bridges has been recognized for many systems and phenomena like
consolidation of granules and soils, wetting of powders, capillary condensation and bridging in
the atomic-force-microscope measurements, etc. The capillary bridge force is oriented normally
to the plane of the three-phase contact line and consists of contributions from the capillary
pressure and surface tension. The toroid (circle) approximation can be applied to quantify the
shape of capillary bridges and the capillary-bridge force. More reliable results can be obtained
using the exact profile of the capillary bridge, which is determined by the Plateau sequence of
shapes: (1) nodoid with “neck”, (2) catenoid, (3) unduloid with “neck”, (4) cylinder, (5)
unduloid with “haunch”, (6) sphere and (7) nodoid with “haunch”. For the shapes (1-5) the
capillary-bridge force is attractive, it is zero for sphere (6) and repulsive for the nodoid (7).
Equations connecting the radius of the neck/haunch with the contact angle and radius are
derived. The procedures for shape calculations are outlined for the cases of bridges between a
plane and an axisymmetric body, and between two parallel planes. In the asymptotic case, in
which the contact angle belongs to the range 70� < �c < 90�, the elliptic integrals reduce to
elementary algebraic functions and the capillary bridge can be described in terms of the toroid
approximation. Some upper geometrical and physical stability limits for the length of the
capillary bridges are considered; the latter can be established by analysis of diagrams of volume
vs. pressure. Attention is paid also to the thermodynamics of nucleation of capillary bridges
between two solid surfaces. Two plane-parallel plates are considered as an example. The
treatment is similar for liquid-in-gas bridges between two hydrophilic plates and for gas-in-
liquid bridges between two hydrophobic plates. Nucleation of capillary bridges is possible
when the distance between the plates is smaller than a certain limiting value. Equations for
calculating the work of nucleation and the size of the critical (and/or equilibrium) nucleus are
presented.



Chapter 11470

11.1. ROLE OF THE CAPILLARY BRIDGES IN VARIOUS PROCESSES AND PHENOMENA

McFarlane and Tabor [1] studied experimentally the adhesion of spherical beads to a flat plate.

They established that in clean dry air the adhesion was negligible. In humid atmosphere,

however, marked adhesion was observed, particularly with hydrophilic glass surfaces. At

saturated humidity the adhesion was the same as that observed if a small drop of water was

placed between the surfaces [1], see Fig. 11.1. Similar results were obtained in the earlier

experimental studies by Budgett [2] and Stone [3]. The formation of a liquid bridge between

two solid surfaces can lead to the appearance of attractive (adhesive) force between them

owing to the decreased pressure inside the liquid bridge and the direct action of the surface

tension force exerted around the annulus of the meniscus. We should say from the very

beginning that in some cases the force due to capillary bridge can be also repulsive, see Eq.

(11.15) below. In all cases this force is perpendicular to the planes of the three-phase contact

lines (circumferences) on the solid surfaces, in contrast with the lateral capillary forces

considered in Chapters 7-10.

The importance of the capillary bridges has been recognized in many experimental and

practical systems [4]. For example, the effect of capillary bridges is essential for the assessment

of the water saturation in soils and the adhesive forces in any moist unconsolidated porous

media [5-7]; for the dispersion of pigments and wetting of powders [8]; for the adhesion of dust

and powder to surfaces [9]; for flocculation of particles in three-phase slurries [10]; for liquid-

phase sintering of fine metal and polymer particles [11,12]; for obtaining of films from latex

and silica particles [13-15]; for calculation of the capillary evaporation and condensation in

various porous media [16-19]; for estimation of the retention of water in hydrocarbon

reservoirs [20], and for granule consolidation [21,22]. The action of capillary-bridge force is

often detected in the experiments with atomic force microscopy [23-25]. The capillary-bridge

force is also one of the major candidates for explanation of the attractive hydrophobic surface

force [26-31], see Section 5.2.3 above.

Pioneering studies (both experimental and theoretical) of capillary bridges have been

undertaken  by  Plateau,  who  classified  the  shapes  of the capillary bridges  (the  surfaces  of
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Fig. 11.1. Liquid bridge between a spherical particle and a planar solid surface.

constant mean curvature) and investigated their stability [32-34]. The study of the instability of

cylindrical fluid interfaces by Plateau was further extended by Rayleigh, who considered also

jets of viscous fluid [35-38]. The shapes of capillary bridges between two solid spheres and

between sphere and plate were experimentally investigated by McFarlane and Tabor [1], Cross

and Picknett [39], Mason et al. [40-41], Erle et al. [42]. Exact solutions of the Laplace equation

of capillarity for the respective bridges have been obtained in the works by Fisher [7], Melrose

[43], Erle [42], Orr et al. [4]. In some cases appropriate simpler approximate solutions can be

applied [4, 41, 44-46]. All these studies deal with capillary bridges between two solids.

Capillary bridges can appear also between solid and fluid phases. Taylor and Michael [47]

studied (both theoretically and experimentally) the formation and stability of holes in a sheet of

liquid, see Fig. 2.5. Forcada et al. [48] examined theoretically the appearance of a capillary

bridge, which “jumps” from a liquid film to wet the tip of the atomic force microscope.

Debregeas and Brochard-Wyart [49] investigated experimentally the nucleation and growth of

liquid bridges between a horizontal liquid interface and a horizontal solid plate at a short

distance apart. The interaction between solid particle and gas bubble, studied by Ducker et al.

[28] and Fielden et al. [50], also leads to the formation of a capillary-bridge-type meniscus.

Capillary bridges between two fluid phases are found to have crucial importance for the process

of antifoaming by dispersed oil drops by Ross [51], Garrett [52, 53], Aveyard et al. [54-56], and

Denkov et al. [57, 58]. When an oil droplet bridges between the surfaces of an aqueous film,
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two scenarios of film destruction are proposed: (i) dewetting of the drop would create film

rupture [52]; (ii) the oil bridge could have a unstable configuration and film rupturing could

happen at the center of the expanding destabilized bridge [53]. The latter mechanism has been

recorded experimentally with the help of a high-speed video camera [57] and the results have

been interpreted in terms of the theory of capillary-bridge stability [58]. More about the

bridging between two fluid phases and the antifoaming action can be found in Chapter 14

below.

Many works have been devoted to the problem of capillary-bridge stability; we give a brief

review in Section 11.3.4 below. Comprehensive review articles about the progress in this field

have been published by Michael [59] and Lowry and Steen [60].

Everywhere in this chapter we consider relatively small bridges and neglect the gravitational

deformation of the meniscus.

11.2. DEFINITION AND MAGNITUDE OF THE CAPILLARY-BRIDGE FORCE

11.2.1. DEFINITION

Let us consider an axisymmetric fluid capillary bridge formed between two solid bodies, say

two parallel plates, or particle and plate (Fig. 11.1), or two particles (Fig. 11.2), or two circular

rings [47]. The presence of capillary bridge will lead to interaction between the two bodies,

which can be attractive or repulsive depending on the shape of the bridge (see below). As in the

case of lateral capillary forces (see Chapters 7 and 8) the total capillary force Fc is a sum of

contributions from the surface tension � and the meniscus capillary pressure, Pc :

Fc = F(�) + F(p) (11.1)

Due to the axial symmetry Fc is directed along the z-axis (Fig. 11.2). To calculate the force

exerted on the upper particle (Fig. 11.2) one can apply the classical Stevin approach: the upper

part of the capillary bridge (above the plane z = 0) can be considered to be “frozen” and the z-

components of the forces exerted on the system “frozen bridge + upper particle” to be

calculated. Thus one obtains F(�) = �2�r0� and F(p) = �r0
2Pc, and consequently,

Fc = � �(2r0� � r0
2 Pc), Pc � P1 � P2 (11.2)
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Fig. 11.2. Sketch of the capillary bridge between
two axisymmetric particles or bodies. P1
and P2 are the pressures inside and outside
the bridge of length L; r0 and rc are the radii
of the neck and the contact line; �c and �
are the values of the meniscus slope angle at
the contact line and at an arbitrarily chosen
section AB.

In Eq. (11.2) negative Fc corresponds to attraction between the two bodies, whereas positive Fc

corresponds to repulsion. In spite of the fact that Eq. (11.2) has been obtained for the section

across the neck (or the “haunch”, see Fig. 2.6b) of the bridge, the total capillary force Fc is

independent of the choice of the cross-section. To prove that one first represents the Laplace

equation, Eq. (2.24), in the form

� d(rsin�)/dr = Pc r tan� � dz/dr (11.3)

and then integrates:

�(rsin� � r0) = 2
1 Pc(r2 � r0

2) (11.4)

Comparing Eqs. (11.2) and (11.4) one obtains the expression for the capillary force Fc

corresponding to an arbitrary section of the bridge, say the section AB in Fig. 11.2:

Fc = � �(2r� sin� � r2 Pc) (0 � � � �) (11.5)

Note that Eq. (11.5) can be directly obtained by making the force balance for the section AB, in

the same way as we did for the section z = 0 (Fig. 11.2). Equation (11.4) guarantees that the

result for Fc will be the same, irrespective of the choice of the cross-section. If r is chosen to be

the radius rc of the contact line at the particle surface, then � = �c is the meniscus slope angle at

the contact line:



Chapter 11474

Fc = � �(2rc� sin�c � 2
cr Pc) (11.5a)

Note that the surface tension term in Eq. (11.5) always leads to attraction between the two

particles, whereas the capillary pressure term corresponds to repulsion for Pc > 0, and to

attraction for Pc < 0 (in the latter case the bridge is nodoid-shaped with a neck, see Section

11.3.1 for details.

In accordance with the Laplace equation, Eq. (2.19), the capillary pressure Pc = P1 � P2 of an

axisymmetric meniscus can be expressed as follows:

Pc = � (1/rm + 1/ra), (11.6)

where rm and ra are, respectively, the meridional and azimuthal radii of curvature. In general, rm

and ra vary from point to point and can have positive or negative sign. The sign convention

followed in this chapter corresponds to positive rm and ra for a sphere. When the capillary

bridge has small length L, but relatively large volume, then ra >> rm and Eq. (11.6) can be

written in the form

Pc � � /rm (ra >> rm) (11.7)

Since Pc = constant (the gravity deformation negligible), then Eq. (11.7) gives rm = constant,

that is the generatrix of the meniscus is a circle in this asymptotic case.

11.2.2. CAPILLARY BRIDGE IN TOROID (CIRCLE) APPROXIMATION

As shown in Chapter 2, in the case of capillary bridges the generatrix of the meniscus is usually

an arc of nodoid or unduloid, which are mathematically expressed in terms of elliptic integrals,

see Fig. 2.7 and Eqs. (2.50)�(2.52). In some special cases the meniscus can be catenoid,

cylinder or sphere, see Section 11.3.1. For the sake of estimates, in the literature the generatrix

is often approximated with an arc of circle, and correspondingly, the meniscus is described as a

part of a toroid [1, 4, 39, 41]. In the asymptotic case described by Eq. (11.7) this is the exact

profile. When the toroid approximation is used, the meridional radius rm is uniquely determined

by the boundary condition for fixed contact angle at the line of three-phase contact (the Young

equation), see e.g. Eq. (11.10) below. On the other hand, in various works the toroid

approximation is used with different definitions of the azimuthal curvature radius ra :
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Fig. 11.3. In toroid approximation the generatrix of the profile of the capillary bridge is approximated
with a circle (with center at O2 in the figure). �1 and �2 are the three-phase contact angles at
the surfaces of the solid plate and the spherical particle of radius R, respectively.

ra = rc/sin�c (maximum possible value of ra) (11.8a)

ra = rc (an intermediate value of ra) (11.8b)

ra = r0 = rc � rm(1 � sin�c) (minimum possible value of ra) (11.8c)

where, as before, r0 is the radius of the “neck” and �c is the meniscus slope angle at the contact

line, which is a circumference of radius rc. Actually, for a given capillary bridge, ra varies from

rc/sin�c at the contact line down to r0 at the “neck”.  Equation (11.8a) was used by Orr et al. [4]

to derive approximate expression for the capillary-bridge force between a spherical particle and

a planar plate for arbitrary values of the contact angles. Equation (11.8c) was utilized by Clark

et al. [41] for a similar system in the special case of zero contact angle (hydrophilic particle and

plate). Below we demonstrate that for 70� < �c < 90� Eq. (11.8b) compares well with the result

for the capillary pressure Pc of a symmetric nodoid-shaped bridge with “neck”, see Eq. (11.54).

Let us consider the application of the toroid (circle) approximation to the capillary bridge

between a spherical particle of radius R and a planar plate, for arbitrary values of  the  contact

angles, denoted by  �1  and  �2, see Fig. 11.3.  The  contact  radius and meniscus slope at the

particle contact line are denoted by rc and �c , respectively; zc is the distance between the plane

of the particle contact line and the planar solid surface. For each of the two circumferences in

Fig. 11.3 one can obtain an expression for zc:
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R(1 � cos�) = zc = zm � rm cos�c , zm = rm cos�1 (11.9)

From Eq. (11.9) one can determine the meridional radius of curvature [4]:

rm = �R(1 � cos�)(cos�1 � cos�c)�1 (toroid approximation) (11.10)

In addition, we notice that �c = � � (� + �2) and rc = Rsin�, see Fig. 11.3. Then substituting

Eqs. (11.6), (11.8a) and (11.10) into Eq. (11.5a) one determines the capillary-bridge force in

toroid approximation:

Fc = ��R� {sin(� + �2)sin� + (1 + cos�)[cos�1 + cos(� + �2)]} (11.11a)

In the same way, but using Eq. (11.8b), instead of Eq. (11.8a), one derives an alternative

expression:

Fc = ��R� {[2sin(� + �2) � 1]sin� + (1 + cos�)[cos�1 + cos(� + �2)]} (11.11b)

A third version of the expression for Fc can be obtained combining Eq. (11.8c) with Eqs.

(11.2), (11.6) and (11.10):

Fc = ��� 
�

�

sin
cos1

a
� [a sin� � (1 � cos�)(1 � sin�)](a + 1 � cos�) (11.11c)

where a � cos�1 + cos(� + �2). In spite of the different form of Eqs. (11.11a)�(11.11c) all of

them give the same asymptotics for ��0,

Fc � �2�� R(cos�1 + cos�2) = 4�� R
2

cos
2

cos 2121 ���� ��

(� << 1) (11.12)

which corresponds to the limiting case of a very small (thin and flat) bridge in the form of ring

around the touching point of the sphere and plane [4]. Such a “pendular ring” can be formed

between a hydrophilic sphere and a plane owing to a local condensation of water, which gives

rise to a strong adhesion [1, 61]. However, if the wetting is sufficiently imperfect that

�1 + �2 > �, then Fc has positive sign and corresponds to repulsion.  For  �1 = �/2  Eq. (11.12)

reduces to a formula reported by Cross and Picknett [39]. In the special case of hydrophilic

surfaces, �1 = �2 = 0, Eq. (11.11c) yields the formula derived by Haynes, see Ref. [41]:

Fc � �2�� R(2sin� + cos� � 1)/sin� (11.13)
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For two equal non-zero contact angles, �1
 = 
�2

 = 
�, Eq. (11.12) reduces to the formula of

McFarlane & Tabor [1]  Fc � �4��Rcos�.  If both the sphere and plane are hydrophilic (� = 0),

then Fc � �4�R� . It is really astonishing that a tiny microscopic pendular ring, localized in the

narrow contact zone sphere-plane, can create a force equal to twice the surface tension, 2� ,

multiplied by the equatorial length of the sphere, 2�R. However, this force is not due to the

direct contribution of the surface tension,  F(�) = 
�2�rc� sin�c.  For � 

�
 0 the thickness of the

gap h = R(1 
�

 cos�) 
�

 0, and in view of Eq. (11.10) rm
 
�

 0. In such a case, the term 1/rm

dominates the capillary pressure, Pc, and the total capillary bridge force Fc, see Eqs. (11.5a) and

(11.6). Therefore, for small pendular rings (� 
�

 0) Eq. (11.7) holds and the toroid

approximation can be applied with a good precision.

As already mentioned, other case, in which the toroid approximation works accurately, is that

of symmetric nodoid-shaped bridges for 70� < 
�c

 < 90�, see Eq. (11.54) below. However, to

achieve really accurate and reliable numerical results it is preferable to work with the rigorous

expressions for the capillary bridge shape, given in the next Section 11.3, and to calculate the

capillary bridge force using Eq. (11.2), or its equivalent forms (11.5) and (11.5a).

11.3. GEOMETRICAL AND PHYSICAL PROPERTIES OF CAPILLARY BRIDGES

11.3.1. TYPES OF CAPILLARY BRIDGES AND EXPRESSIONS FOR THEIR SHAPE

Let us define the dimensionless capillary pressure

p � Pc r0 /(2�) � k1r0 (11.14)

Here k1 stands for the mean curvature of the capillary meniscus. The sequence of meniscus

shapes, observed when p is increased, has been classified by Plateau [34], see Section 2.2.3 and

Table 11.1. The capillary pressure Pc can be both positive and negative; in general �	 < p < +	.

Note that the presence of “neck” (Fig. 2.6a) not necessarily means that the capillary pressure p

is negative. Indeed, the catenoid and unduloid, corresponding to 0 
�

 p < 
2
1  (Table 11.1) have

necks, but their capillary pressure is not negative, i.e. the pressure inside the bridge P1 is equal

or greater than the outside pressure P2. On the other hand, all bridges with a “haunch”

(Fig. 2.6b) have positive capillary pressure, 2
1  < p < 

	.



Chapter 11478

Table 11.1. Types of capillary bridges depending on dimensionless capillary pressure p �
Pcr0/(2�); k1 � p/r0; r0 is the radius of the “neck” or ”haunch”; rc is contact line radius; Lnn, Lnh, Lun,
Luh, L*, Lc and Ls are upper stability limits; see Eq. (11.16) and Fig. 11.5 for the notation.

bridges with “neck” bridges with “haunch”

�	 < p < 0 p = 0 0 < p < 1/2 p = 1/2 1/2 < p < 1 p = 1 1 < p < +	

nodoid catenoid unduloid cylinder unduloid sphere nodoid

Lnn, see

Eq. (11.59)

L*/rc = 1.3255

L*/2r0 = 1.200

Lun, see

Eq. (11.56)
Lc/2r0 = �

Luh, see

Eq. (11.57)
Ls/2r0 = 1

Lnh, see

Eq. (11.60)

Notation:        q1 = (1 � �0
2/�1

2)1/2,

                   sin�1 = q1
�1(1 � �0

2/�2)1/2

� = �1 for nodoid,    � = +1 for unduloid

�

Notation:        q2 = (1 � �1
2/�0

2)1/2,

                   sin�2 = q2
�1(1 � �2/�0

2)1/2

� = �1 for nodoid,    � = +1 for unduloid

Shape:                 (�0 � � � �1)

|k1|z(�) = �{�1E(�1,q1) + ��0 F(�1,q1)

              �[(�2 
� �0

2)(�1
2 
� �

2)]1/2/�}

r = r0

Shape:                 (�1 � � � �0)

k1z(�) = �[�0E(�2,q2) + (1��0)F(�2,q2)]

Area:         A(r) = 2� �
r

r

dr
0

r (1 + zr
2)1/2

= 2
1

2
k
�

{�1E(�1,q1)�[(�2
��0

2)(�1
2
��

2)]1/2/�}

A =

2�r0 z

Area:         A(r) = 2� �
0r

r

dr r (1 + zr
2)1/2

= 2
1

2
k
�

�0 E(�2,q2)

Volume:       V(r) = � �
r

r

dr
0

r2 dz/dr =

= �
��

|| 3
1

1

3 k
E(�1,q1) � �0

2 F(�1,q1)

� (� + �
2)[(�2

��0
2)(�1

2
��

2)]1/2/(��1)

� � (2�0
2 + 2�1

2 + 3��0�1)

V =

= �r0
2 z

Volume:       V(r) = � � �
0r

r

dr r2 dz/dr =

= �
�

3
13k

�0 E(�2,q2) � �0�1
2 F(�2,q2)

+ �[(�2
��1

2)(�0
2
��

2)]1/2

� � (2�0
2 + 2�1

2 + 3��0�1)

Running slope:        tan� = dz/dr

cos2
� = (�2

��0
2)(�1

2
��

2)/�2 �

Running slope:        tan� = dz/dr

cos2
� = (�2

��1
2)(�0

2
��

2)/�2
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With the help of Eq. (11.4) one can bring Eq. (11.2) into the form

Fc = �2�r0� (1 � p) (11.15)

For a spherical capillary bridge p = 1 and Eq. (11.15) gives zero capillary bridge force, Fc = 0.

The latter means that for a spherical bridge the repulsive capillary pressure force, F(p) = �r0
2Pc,

exactly counterbalances the attractive contribution of the surface tension, F(�) = �2�r0� , cf.

Eq. (11.2). The fact that if Fc = 0, then the capillary bridge must be a zone of sphere, has been

established by Mason and Clark [62].

Note also, that the nodoid with “haunch” (1 < p < 	) is the only type of capillary bridge, for

which the total capillary-bridge force is repulsive, Fc > 0. On the other hand, the nodoid with

“neck” is the only type of capillary bridge, for which the capillary pressure is negative, p < 0.

To describe the shape of the capillary bridges we will use the same notation as in Section 2.2.3;

in addition, we introduce the following dimensionless variables:

� = | k1 | r,                �0 = | k1 | r0,               �1 = | k1 | r1,     �c = | k1 | rc (11.16)

In view of Eq. (2.28) one has

�1 = | 1 � �0 sign(p) | (11.17)

where sign(p) denotes the sign of p. Then  Eq. (2.48), which governs the shape of the capillary

bridge, can be represented in the form

))((
tan

22
1

2
0

2

2
10

����

����
�

��

�
���

dr
dz (11.18)

Here, as before, � is the running meniscus slope angle, see Fig. 11.2, and the parameter � = 
1

is defined in Table 11.1. In addition,

�0 � � � �1 for a bridge with “neck”, (11.19a)

�1 � � � �0 for a bridge with “haunch”. (11.19b)

The integration of Eq. (11.18), in view of Eq. (11.16), yields the expressions for the generatrix

of the meniscus profile, z(�), which are given in Table 11.1; in fact, these expressions are
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equivalent to Eqs. (2.50) and (2.52). The elliptic integrals of the first and second kind, F(�, q)

and E(�, q),  are defined by Eq. (2.51). In the special case of catenoid the meniscus shape is

determined by Eq. (2.49). For the catenoid the meridional and azimuthal curvature radii are

equal by magnitude, | rm
 |  = | ra

 | , as it is for a sphere; however, rm = �ra. For that reason the

surface obtained by a rotation of a catenoid is sometimes termed “pseudosphere”. For a sphere

the deviatoric curvature D � 1/ra � 1/rm is constant, D � 0, whereas for a pseudosphere

D = r0/r2, i.e. it is not zero and varies from point to point.

Table 11.1 contains also expressions for the area A(r) and volume V(r) derived with the help of

Eq. (11.18). A(r) and V(r) represent, respectively, the meniscus area and the volume of a

portion of the bridge confined between the cross-sections of radii r and r0, the latter being the

section across the neck/haunch. With the help of the expressions for A(r) and V(r) given in

Table 11.1 one can determine the portions of bridge surface area and volume, A(rx, ry) and

V(rx, ry) comprised between every two sections of radii rx and ry ,

A(rx, ry) = | A(rx) ���  A(ry) | , V(rx, ry) = | V(rx) ��  V(ry) | (11.20)

where the signs “�” and “+” stand, respectively, for sections situated on the same and the

opposite side(s) with respect to the section r = r0 (the neck/haunch).

11.3.2. RELATIONS BETWEEN THE GEOMETRICAL PARAMETERS

First, let us note that

�
2 � �0�1 for nodoid with “neck” (11.21)

�
2 � �0�1 for nodoid with “haunch” (11.22)

�
2 = �0�1 inflection point for all unduloids (11.23)

In addition, from the definition of � (Table 11.1 ) and from Eq. (11.17) it follows

(�1 + ��0)2 = 1 (11.24)

Then using the identity (cos�)�2 = 1 + tan2
�  from Eq. (11.18) one can express the cosine of the

running slope angle:

cos2
� = [(�2 � �0

2)(�1
2 � �2)]/�2 (11.25)
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Equation (11.25), which holds for both nodoids and unduloids, can be represented also in the

form

(�0�1)2 � �2(�0
2 + �1

2) + �2cos2
� + �4 = 0, (11.26)

which can be considered as a quadratic equation for determining �2 if �0 and � are given:

�
2 = 2

1 [b 
 (b2 � 4�0
2
�1

2)1/2] (11.27)

b � �0
2 + �1

2 � cos2
� = sin2

� � 2��0�1 (11.28)

The fact that Eq. (11.27) contains two roots for �2 deserves a special attention.

In the case of nodoid (�0 � �1 = 
1) Eq. (11.27) has always two positive roots for �2, which in

view of Eqs. (11.21) and (11.22) correspond to the two types of nodoids:

�
2 = �0�1 + 2

1 {sin2
� � [(sin2

� + 4�0�1)sin2
�]1/2]} (nodoid with “neck”) (11.29)

�
2 = �0�1 + 2

1 {sin2
� + [(sin2

� + 4�0�1)sin2
�]1/2]} (nodoid with “haunch”) (11.30)

In the case of unduloid (�0 + �1 = 1) Eq. (11.27) has real roots for �2 only when

0 < �0 � sin2

2
� (for unduloid with “neck”, � < �/2) (11.31)

sin2

2
�  � �0 < 1 (for unduloid with “haunch”, � > �/2) (11.32)

To understand the meaning of the two roots in the case of unduloids, one can express

Eq. (11.27) in the form

�
2 = �0�1 + 2

1 { sin2
� � 4�0�1 
 [(sin2

� � 4�0�1)sin2
�]1/2]}      (all unduloids) (11.33)

Then in view of Eq. (11.23) the two roots in Eq. (11.33) are the radial coordinates of the two

points with the same slope angle �, situated on the left and right from the inflection point of the

unduloid at �2 = �0�1.

Another possible problem, appearing when the boundary conditions for the meniscus shape are

imposed, is to determine the radius of the neck/haunch, �0, for given � and �. With that end in

view we use Eq. (11.24) to represent Eq. (11.26) in the form
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u2 � 2��2u + (�4 � �2 sin2
�) = 0, u � �0�1 (11.34)

Solving Eq. (11.34) for nodoid-shaped bridge one obtains u = �2 
 � sin�, where the roots with

“+” and “�“ correspond to meniscus with “neck” and “haunch”, respectively. Then using the

fact that for nodoid �1 = �0 
 1, and consequently, u = �0
2 
 �0, one derives

�0 = 2
1 {[1 + 4�(� + sin�)]1/2 � 1} (nodoid with “neck”) (11.35)

�0 = 2
1 {[1 + 4�(� � sin�)]1/2 + 1} (nodoid with “haunch”, � > sin�) (11.36)

Solving Eq. (11.34) for unduloid-shaped bridge one obtains u = ��2 + � sin� (the other root

must be disregarded). Since for nodoid u = �0 � �0
2, one finally derives

�0 = 2
1 {1 � [1 � 4�(sin� � �)]1/2} (unduloid with “neck”, � < sin�), (11.37)

�0 = 2
1 {1 + [1 � 4�(sin� � �)]1/2} (unduloid with “haunch”, � < sin�) (11.38)

Equations (11.37) and (11.38) yield 0 < �0 < 2
1 , and 2

1  < �0 < 1, respectively, which in view of

Table 11.1 determines the type of the bridge (for unduloids �0 � p).

Capillary bridge formed between axisymmetric surface and a plane. To illustrate the

application of the above equations let us consider the capillary bridge formed between a curved

axisymmetric  surface of equation z = h(r) and a plane. The equation z = h(r) may represent a

sphere (see Fig. 11.3), or the shape of the cantilever of the atomic force microscope, see Refs.

[23-25, 46]. To specify the problem we assume that the contact angles �1 and �2 are known

(cf. e.g. Fig. 11.3), and that the capillary pressure Pc is negative, i.e. we deal with a nodoid-

shaped bridge with neck. Such bridges can be spontaneously formed by capillary condensation

of water between two hydrophilic surfaces at atmospheric humidity lower than 100 %;

alternatively, such bridges can be spontaneously formed by capillary cavitation of vapor-filled

bridges between two hydrophobic surfaces at temperatures lower than the boiling point of the

aqueous phase; see Section 11.4 for more details. The meniscus slope angle at the curved

surface is

�c = �2 + arctan(dh/dr) (11.39)



Capillary Bridges and Capillary-Bridge Forces 483

Then for a given (dimensionless) contact radius on the curved solid surface, �c = | k1 | rc, using

Eq. (11.35) one calculates the radius of the neck,

�0 = 2
1 {[1 + 4�c(�c + sin�c)]1/2 � 1}, (11.40)

of the nodoid-shaped surface; the real bridge meniscus represents a part (zone) of this surface.

With the value of �0 thus obtained from Eq. (11.29) one determines the (dimensionless) contact

radius c�  at the planar solid surface:

2
1

2 )( cc rk��  = �0�1 + 2
1 {sin2

�1  � [(sin2
�1 + 4�0�1)sin2

�1]1/2]} (�1 = �0 + 1)   (11.41)

Further, the length of the capillary bridge (the distance between the planes of the contact lines

on the curved and planar solid surfaces) can be expressed in the form

h(rc) = | z(�c) 
 z( c� ) | (11.42)

where the function z(�) is given in Table 11.1; the sign is “+” or “�” depending on whether the

neck appears on the real meniscus, or on its extrapolation; as already mentioned, h(r) is a

known function. Having in mind Eqs. (11.40) and (11.41) one concludes that Eq. (11.42)

relates two parameters: �c and k1, or equivalently, rc = �c / | k1 |  and Pc = 2� k1. If one of them

(the contact-line radius rc, or the capillary pressure Pc) is known, then we can determine the

other one by solving numerically Eq. (11.42).

Similar procedure can be applied to the case of unduloid with neck; in the latter case one has to

use Eqs. (11.37) and (11.33) instead of Eqs. (11.40) and (11.41).

11.3.3. SYMMETRIC NODOID-SHAPED BRIDGE WITH NECK

In this subsection we consider another example of physical importance: nodoid-shaped bridge

with neck, formed between two identical parallel planar solid surfaces separated at a distance h

(Fig. 11.4). As mentioned earlier, when the liquid phase is water, an aqueous bridge can be

formed between two hydrophilic solid surfaces, or alternatively, a vapor-filled bridge can be

formed between two hydrophobic solid surfaces. In both cases we will denote by �c the

meniscus slope angle at the contact line, which  represents  also  the  three-phase  contact  angle



Chapter 11484

Fig. 11.4. Capillary bridge formed between two
plane-parallel solid surfaces separated at a
distance h; r0 and rc are the radii of the neck
and the contact line; �c is the contact angle
measured across the phase of the bridge.

measured across the phase of the bridge (�c < 90�). As before, �c = | k1 | rc is the dimensionless

radius of the contact line. With the help of Table 11.1 and Eq. (11.25) the equation for the

length of the bridge, h = 2z(�c),  can be represented in the form

| k1 |  h/2 + �1E(�1,q1) = �0 F(�1,q1) + cos�c (11.43)

where

q1 � (1 � �0
2/�1

2)1/2,      sin�1 � (1 � �0
2/�c

2)1/2/q1, �1 = �0 + 1. (11.44)

In view of Eqs. (11.40) and (11.44) one can use Eq. (11.43) to calculate �c if k1 is known, or

vice versa, to determine k1 (and the capillary pressure Pc = 2� k1) if rc = �c
 / | k1 |  is given. To

achieve that one has to solve Eq. (11.43) numerically; the stable numerical method of the

“arithmetic-geometric mean” can be applied to calculate the elliptic integrals, see Ref. [63] �

Chapter 17.6 therein. Depending on the parameters values Eq. (11.43) could have one or two

solutions.

Long ago Plateau [34] established that two solutions are possible for a nodoid-shaped bridge

with neck, formed between two parallel circular discs, at given volume, radius rc and separation

h; see also Refs. [59,60]. Experimentally, one of the solutions corresponds to a stable bridge,

but loses its stability when it coincides with the other solution, in which case the fluid separates

axisymmetrically forming cap-shaped drops onto the two discs [34,59].
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Let us now investigate analytically the case 70� < �c < 90�, in which the elliptic integrals can

be asymptotically expressed in terms of algebraic functions. (Note that in the case of

hydrophobic plates gas-filled bridge 70� < �c < 90� corresponds to 90� < � < 110�, where � is

the contact angle measured across water, see Fig. 11.4.) In this range of angles, which is often

experimentally observed, one has

sin�c � 1 � �2/2, � � cos�c, �
2 << 1 (11.45)

The substitution of the latter expression in Eq. (11.40), after expansion in series, yields

�0 = �c � �c�
2/[2(1 + 2�c)] + O(�4) (11.46)

Then one derives

(1 � �0
2/�c

2)1/2 = � (1 + 2�c)�1/2 + O(�3) (11.47)

With the help of Eqs. (11.17) and (11.46) one obtains:

(1 � �0
2/�1

2)1/2 = (1 + 2�c)1/2/(1 + �c)+ O(�2) (11.48)

Next, the combination of Eqs. (11.47) and (11.48) yields:

sin�1(�c) � (1 � �0
2/�c

2)1/2 (1 � �0
2/�1

2)�1/2 = � (1 + �c)/(1 + 2�c) + O(�3) (11.49)

One sees that sin�1(�c) = O(�) is a small quantity. Then the elliptic integrals can be expanded

in series:

F(�1,q1) = �
�

1sin

0
22

1 sin1

�

�

�

q

d  � sin�1 + O(sin3
�1) � E(�1,q1) (11.50)

Eqs. (11.49) and (11.50) lead to

F(�1,q1) � E(�1,q1) � sin�1 = � (1 + �c)/(1 + 2�c) + O(�3) (11.51)

Finally, the substitution of Eq. (11.51) into Eq. (11.43) yields a simple relation between the

thickness of the gap, h, and the dimensionless radius of the contact line �c:

c

cc

k
h

�

��

21||
cos2

1 �

� (0 < �c < 	;  70� < �c < 90�) (11.52)
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Note that the above expansions for small �  are uniformly valid for 0 < �c < 	 and k1 < 0. For

�c�0 (and k1 < 0) Eq. (11.52) gives h �0, as it could be expected. In the other limit, �c�	

Eq. (11.52) reduces to

||
cos

1
max k

h c�
� (70� < �c < 90�) (11.53)

where hmax denotes the maximum possible length of the bridge (the maximum width of the gap

between the plates), for given values of the capillary pressure, Pc = 2�k1, and the contact angle

�c, the latter being measured across the bridge phase.

It is worth noting that for fixed h and �c
 
�

 0 Eq. (11.52) gives k1
 
�

 0, but the ratio rc = �c
 / | k1 |

�
 h/(2cos�c) tends to a non-zero constant. One can obtain smaller values of rc

(i.e. rc < h/2cos�c) only using unduloid (rather than nodoid) with “neck”. It should be also

noted, that Eq. (11.52) can be presented in the alternative form

�Pc = � ��
�

�
��
�

�
�

c

c

rh
1cos2 � (70� < �c < 90�) (11.54)

The comparison between Eqs. (11.54) and (11.6) shows that the meridional curvature radius is

constant: rm = �h/(2cos�c) = const. In fact, Eq. (11.54) represents the result, which would be

obtained if the “toroid” (“circle”) approximation were directly applied to express the capillary

pressure using the definition (11.8b) for the azimuthal curvature radius ra. Hence, it turns out

that the toroid approximation can be applied with a good precision to nodoid-shaped bridges

with neck, if the contact angle belongs to the interval 70� < �c < 90�.

Similar expansion for small �2 can be applied also to the case of unduloid with neck; as a

starting point one is to use Eq. (11.37) with � = �c, instead of Eq. (11.40). In first

approximation one obtains again Eq. (11.54), that is the toroid approximation.

11.3.4. GEOMETRICAL AND PHYSICAL LIMITS FOR THE LENGTH OF A CAPILLARY BRIDGE

Although derived for a special type of capillary bridge, Equation (11.53) demonstrates the

existence of limits for the length of a capillary bridge. The nodoid and unduloid are periodical

curves along  the  z-axis,  see  Figs. 2.7 and 11.5.  Moreover,  the  nodoid  has  self-intersection
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Fig. 11.5. Geometrical upper limits for the stability of capillary bridges: (a) distances between two
closest points with vertical tangents for an unduloid with “neck”, Lun, and with “haunch”,
Luh; (b) distances between two closest points with horizontal tangents for a nodoid with
“neck”, Lnn, and with “haunch”, Lnh.

points. Unduloid-shaped bridges of length greater than the period of unduloid as a rule are

physically unstable, see Refs. [59,60]; hence the period of unduloid gives an upper limit for the

stability of the respective bridges (the longer bridges are unstable, whereas the shorter bridges

could be stable or unstable). The distance (along the z-axis) between two consecutive points

with horizontal tangent (slope angle � = 0) on the nodoid (Fig. 11.5b) can also serve as an

upper limit for the stability of nodoid-shaped bridges. Below we provide expressions for these

upper stability limits, which could be helpful for estimates.

In Fig. 11.5a the geometrical limits for the stability of the unduloids with “neck” and “haunch”

are denoted by Lun and Luh, respectively. Each of them can be identified with 2z(�1), where the

function z(�) is given in Table 11.1. In addition, for � = �1 one has sin�1 = sin�2 = 1;

consequently, �1 = �2 = �/2, and the elliptic integrals in Table 11.1 reduce to the respective total

elliptic integrals [63-66]:

K(q) � F(�/2, q), E(q) � E(�/2, q), (11.55)

Then with the help of Eqs. (11.14), (11.16), (11.17) and the expressions for z(�) in Table 11.1

one obtains
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Lun(p)/(2r0) = K(q1) + 
p

p�1  E(q1),        q1 = 
p

p
�

�

1
21

   for 0 < p < 2
1 (11.56)

Luh(p)/(2r0) = E(q2) + 
p

p�1  K(q2),        q2 = 
p
p 12 �

   for 2
1  < p < 1 (11.57)

For p 
�

 
2
1  one has q1 = q2 = 0; in addition, K(0) = E(0) = �/2. Then from Eqs. (11.56) and

(11.57) one obtains

Lc � 
2/1

lim
�p

Lun(p) = 
2/1

lim
�p

Luh(p) = 2�r0 (11.58)

Indeed, the upper limit for the stability of a cylindrical (p = 2
1 ) capillary bridge of radius r0 is

Lc = 2�r0. This critical value was given first by Beer [67] and obtained in the studies by Plateau

[34]. Lc = 2�r0 is the limit of stability of the cylindrical bridge against axisymmetric

perturbations at fixed (controlled) volume of the bridge. In the case of pressure control the limit

of stability appears at two times shorter length: L = �r0, see e.g. Refs. [59,60].

For p 
�

 1 (spherical bridge, Table 11.1) Eq. (11.57) yields Luh
 
�

 2r0; indeed, from geometrical

viewpoint the larger possible diameter of a spherical bridge is the diameter of the sphere, 2r0.

The geometrical limits for the length of a nodoid-shaped bridge (see Fig. 11.5b) can be

determined in a similar way:

),(E
||
1||

||
1||2

),(F
2 1111

0

nn
gggg q

p
p

p
p

q
r

L
��

�
�

�

�� �	 < p < 0 (11.59)

),(F1),(E
2 2222

0

nh
gggg q

p
pq

r
L

��
�

�� 0 < p < 	 (11.60)

where  q1g � (2|p| + 1)1/2(1 + |p|)�1;  sin�1g � [(1 + |p|)/(2|p| + 1)]1/2;  q2g � (2p � 1)1/2p�1  and

sin�2g � [p/(2p � 1)]1/2;  the fact that the nodoid has horizontal tangent at  � = �g � (�0�1)1/2  has

been used. For p�1 Eq. (11.60) yields Lnh�
 2r0, i.e. we arrive again to the result for a sphere,

see above.

For p 
�

 0 Eqs. (11.56) and (11.59) give divergent values for Lun and Lnn; this result can be

attributed to the fact that there are no geometrical limitations for the length of a catenoid. On

the other hand, there are physical limitations for the length of a catenoid stemming from the
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boundary conditions for the Laplace equation. Plateau [34] produced a catenoid in stable

equilibrium by suspending oil on two circular rings and adjusting the volume of the oil so that

the interface across the rings was planar. He found that the catenoid thus produced was at the

limit of its stability when the distance apart of the rings L to the diameter 2rc reached a value

approximately 0.663. He recognized also that for L/2rc < 0.663 there is an alternative catenoid

solution not observable in the experiments, and that the limit of stability is reached when the

two solutions coincide; see Ref. [59] for more information.

To elucidate this point one can use the equation of the catenoid, Eq. (2.49), to obtain the

connection between the length of the bridge, L, and the contact radius rc:

rc/r0 = cosh(L/2r0) (11.61)

Introducing variables x � L/2r0 and a � L/2rc one transforms Eq. (11.61) to read

x = a cosh x (11.62)

When a is small enough the straight line y1(x) = x has two intersection points with the curve

y2(x) = a cosh x ; they represent the two roots of Eq. (11.62) corresponding to the two catenoids

recognized by Plateau. For larger values of a Eq. (11.62) has no solution. For some

intermediate critical value a = a* the line y1(x) is tangential to the curve y2(x) and the two roots

coincide; from the condition for identical tangents, y1’(x*) = y2’(x*), one obtains a*sinh x* = 1.

The combination of the last result with Eq. (11.62) yields a transcendental equation for x* :

x* = coth x* 
 x* � L*/2r0 = 1.1996786... (11.63)

Finally, one recovers the result of Plateau: L*/2rc � a* = (sinh x*)�1 = 0.6627434... � 0.663.

The latter value determines the maximum length, L*, of the catenoid formed between two

identical circular rings of a given radius rc.

Stability of capillary bridge menisci. As mentioned above, the parameters Lun, Luh, Lc,

Lnn, Lnh and L* calculated above serve as upper limits for the length of the bridges: the longer

bridges are unstable, but the shorter bridges could be stable or unstable, depending on the

specific conditions. In general, the bridges are more stable when the volume of the bridge and

the position of the three-phase contact line are fixed. The bridges are less stable when the

pressure, rather than the volume, is fixed; see Refs. [59, 60] for a detailed review.
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In general, two methods are used to investigate the stability of capillary bridges. As

demonstrated in Section 2.1.2 the Laplace equation of capillarity corresponds to an extremum

of the grand thermodynamic potential �. A solution of Laplace equation describes a stable or

unstable equilibrium meniscus depending on whether it corresponds, respectively, to a

minimum or maximum of �. Then the sign of the second variation of � is an indication for

stability or instability. This approach was applied to capillary bridges by Howe [68], and

utilized by many authors [69-71].

The second method for determining the stability of capillary menisci arose from the analysis of

the behavior of pendant and sessile drops and bubbles used in the methods for surface tension

measurements. These observations revealed that the stability limits always lie at turning points

in the plots of volume against pressure (PV-diagrams) [60]. The turning points in volume are

the points on the PV-diagram at which the volume has local minimum or maximum; they

represent stability limits in the case of fixed (controlled) volume. Likewise, the turning points

in pressure are the points on the PV-diagram at which the pressure has local minimum or

maximum; they represent stability limits in the case of fixed (controlled) pressure.

Classical example for turning points in pressure are the local extrema of pressure in the PV-

diagram predicted by the well-known van der Waals equation of state for temperatures below

the critical one; these turning points separate the unstable region from the region of

(meta)stable gas or liquid, see e.g. Ref. [72]. Another example for turning point in pressure is

observed with the known “maximum bubble pressure method” for measurement of dynamic

surface tension [73-75]; the transition from stability to instability occurs when the bubble

reaches hemispherical shape and maximum pressure [76]. Note, however, if the same system is

under volume control (say liquid drop of controlled volume instead of bubble) the turning point

in pressure is no more a stability limit: stable states beyond hemisphere can be realized. The

idea that stability changes for drops always occur at turning points was put forward as a

proposition for meniscus stability analysis by Padday & Pitt [77] and Boucher & Evans [78]. In

addition, bifurcation points on the PV-diagrams are also recognized as stability limits,

especially for relatively long capillary bridges at volume control (the bridges under pressure

control are less stable and cannot survive until the appearance of bifurcation points), see Refs.

[60,79] for details.
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Fig. 11.6. Plot of the volume of a liquid bridge, V, scaled with the volume of the cylindrical bridge, Vcyl,
against the dimensionless pressure difference across the meniscus surface, cP~  , see Eq. (11.64);
the bridge is symmetric like that in Fig. 11.4; V and ˜ P c  vary at fixed contact line radius rc and
fixed length L of the bridge {after Ref. [60]}.

For example, the stability limit L = �r0 for cylindrical bridge under pressure control is a turning

point in pressure, whereas the stability limit L = 2�r0 for cylinder under volume control is a

bifurcation point [59,60].

Figure 11.6 represents a sketch of a typical PV-diagram for relatively short liquid capillary

bridges, L/rc � L*/rc = 1.3255, which are symmetric with respect to the plane of the “neck”/

“haunch”, like it is in Fig. 2.6. Moreover, it is assumed that the contact radius, rc, is fixed, but

the slope angle at the contact line, �c, can vary, cf. Fig. 11.4. The dimensionless pressure in

Fig. 11.6 is defined as follows:

cP~  � Pc rc /(2�) (11.64)

For catenoid and cylinder cP~  = p = 0 and 2
1 , respectively, but in general cP~  � p , cf. Eqs.

(11.14) and (11.64) (p is not suitable to be plotted on a PV-diagram, because it reflects not only

variations of the pressure Pc, but also changes in the neck radius r0). Each point on the curve in

Fig. 11.6 corresponds to a capillary bridge in mechanical equilibrium, which could be stable or

unstable. In particular, the section AB corresponds to unduloid-shaped bridges (0 < p < 2
1 , cf.

Table 11.1) with a very thin neck, which are unstable [60]. At the point A the neck radius r0

becomes zero and the bridge splits on two pieces of spheres. Point B is a turning point in

volume; it represents a boundary between stable bridges of controlled volume (on the left) and
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the unstable bridges (on the right). Likewise, point D is a turning point in pressure: the whole

line DEFGH corresponds to stable bridges under pressure (or volume) control, whereas the

section DA corresponds to bridges unstable under pressure control. The section BD represents

bridges with neck, which are stable under volume control, but unstable under pressure control.

The points C and E, at which cP~  = p = 0, represent the two catenoids, determined by the roots

of Eq. (11.62). The catenoid bridge E (that of greater volume) is stable in both the regimes of

fixed volume and pressure, whereas the catenoid bridge C (that of smaller volume) is stable

only in the regime of fixed volume [60]. When L/rc = L*/rc = 1.3255 points C and E merge

with point D, and for L/rc > 1.3255 there are no equilibrium catenoid (and nodoid with neck)

bridges. The section EF corresponds to stable unduloid-shaped bridges with “neck”

(0 < p < 2
1 ), the section FG represents stable unduloid-shaped bridges with “haunch”

( 2
1  < p < 1), and finally, the section GH corresponds to stable nodoid-shaped bridges with

“haunch” (p > 1, cf. Table 11.1). The equilibrium bridges at the points F and G have the shape

of cylinder and truncated sphere, respectively. At the point H one has  L/r0 = Lnh/r0,  see

Eq. (11.60), which is the limit of stability of the menisci with “haunch” [60].

For  L/rc = �  the point F (cylindrical bridge) coincides with the point D (turning point in

pressure) and the cylindrical bridge loses its stability under regime of pressure control. For

L/rc > �  the regions with stable bridges on the PV-diagrams become more narrow, and the PV-

diagrams (representing mostly unstable states) become more complicated, see the review by

Lowry and Steen [60].

11.4. NUCLEATION OF CAPILLARY BRIDGES

11.4.1. THERMODYNAMIC BASIS

The thermodynamics of nucleation (creation of a new phase from a supersaturated mother

phase), stems from the works of Gibbs [80] and Volmer [81], and describes the formation and

growth of small clusters from the new phase (drops, bubbles, crystals) in a process of phase

transition like condensation of vapors, cavitation (formation of bubbles) in boiling liquids,

precipitation of a solute from solution, etc. [82-86]. As a driving force of nucleation the
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increased chemical potential of the molecules in the mother phase with respect to the new

phase is recognized. The nuclei of the new phase in the processes of homogeneous (bulk)

condensation and cavitation are spherical drops and bubbles. On the other hand, in the case of

heterogeneous nucleation (nucleation on a surface) the nuclei have the shape of truncated

spheres. In both cases the presence of a convex spherical liquid interface of large curvature

(small nucleus) leads to a large value of the pressure inside the nucleus, which in its own turn

increases the molecular chemical potential with respect to its value in a large phase of planar

interface. That is the reason why a necessary condition for such nuclei to appear is the initial

phase to be “supersaturated”: in the case of condensation the humidity must be slightly above

100 % ; in the case of cavitation (boiling) the equilibrium vapor pressure of the liquid to be

higher than the applied outer pressure.

The nodoid-shaped capillary bridges (as well as the concave spherical menisci in capillaries)

have negative capillary pressure and provide quite different conditions for nucleation.

Formation of nuclei with such interfacial shape makes possible the condensation to occur at

humidity markedly below 100% and the cavitation to happen when the equilibrium vapor

pressure of the liquid is considerably lower than the outer pressure. The effect of concave

menisci on nucleation was first established in the phenomenon capillary condensation, which

appears as a hysteresis of adsorption in porous solids [17, 86-88]. The experiments of

McFarlane and Tabor [1] on the adhesion of spherical beads to glass plate in humid atmosphere

give an example for nucleation of liquid capillary bridges.

The formation of nodoid-shaped cavities between two solid surfaces was examined by

Yushchenko et al. [89] and Parker et al. [90]. As already mentioned, the formation of such

cavities is proposed as an explanation of the attractive hydrophobic surface force [26-31].

As a physical example let us consider the nucleation of nodoid-shaped capillary bridges in the

narrow gap between two parallel plates (Fig. 11.4). The theoretical treatment is the same for

liquid bridges between two hydrophilic solid surfaces and for gas bridges between two

hydrophobic solid surfaces. In other words, the approach can be applied to both capillary

condensation and capillary cavitation. The work of formation of a nucleus can be expressed in

the form [82, 83, 85]:
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W(rc) = Al� � 2Ac� cos�c � V(n)[P(n)(rc) � P] + N(n)[	(n)(rc) � 	] (11.65)

which represents the difference between the free energies of the system in the states with and

without nucleus. The meaning of the symbols and terms in Eq. (11.65) is the following. As

usual, � is the surface tension, Al denotes the area of the liquid meniscus and

Ac = �rc
2 (11.66)

is the area encircled by each of the two contact lines of radius rc  (Fig. 11.4). We will use rc as a

parameter which identifies the capillary bridge, just as in the theory of homogeneous nucleation

the drop/bubble radius is used to identify the spherical nuclei. The first and the second terms in

the right-hand side of Eq. (11.65) represent the work of formation of new phase boundaries

liquid/gas and solid/fluid, respectively; the third term is the mechanical work related to the

change in the pressure inside the nucleus, P(n), in comparison with the pressure P in the

ambient mother phase; 	(n)(r) and 	 are chemical potentials of the molecules in the nucleus and

in the ambient mother phase; N(n) and V(n) are the number of molecules in the nucleus and its

volume. We assume that the mechanical equilibrium has been attained (the Laplace and Young

equations are satisfied); however, the bridges could be out of chemical equilibrium. In

particular, the multiplier �� cos�c in Eq. (11.65) stems from the Young equation. As in Section

11.3.3 angle �c is the three-phase contact angle measured across the bridge phase (in the case

of gas-in-liquid bridge the complementary angle, � = 
�

 
�

 
�c, is traditionally called ‘the contact

angle’). Depending on whether we deal with gas (vapor) or liquid bridges, the following

expressions are to be substituted:

N(n)[	(n)(rc) � 	] = P(n)(rc)V(n) ln[P(n)(rc)/P0] (gas bridges) (11.67)

N(n)[	(n)(rc) � 	] = (V(n)/Vm){[P(n)(rc)�P]Vm � kT ln(P’/P0)}         (liquid bridges) (11.68)

As before, P(n) is the pressure in the nucleus (in the capillary bridge); P0 is the equilibrium

vapor pressure of a planar liquid surface at that temperature; P’ is the vapor pressure in the gas

phase surrounding a liquid-bridge nucleus; Vm is the volume per molecule in the liquid phase.

To obtain Eq. (11.67) we have used the expression for the chemical potential of the vapors

inside the nucleus, 	(n)(rc) = 	0 + kT lnP(n)(rc), and that for the vapors which are in equilibrium
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with the mother phase, 	 = 	0 + kT lnP0;  	0 is a standard chemical potential; the ideal gas

equation, P(n)(rc)V(n) = N(n)kT, has been also employed.

To obtain Eq. (11.68) we have used the expressions 	 = 	0 + kT lnP’ and 	(n)(rc) = 	0 +

kT lnP(v)(rc), where the equilibrium vapor pressure of the concave liquid bridge, P(v), is given

by the Gibbs-Thomson equation

P(v) = P0 exp(PcVm/kT) = P0 exp{ [P(n)(rc) � P]Vm / kT } (11.69)

Note that quantities like P, P0, P’, 	, Vm, are independent of rc.

Let us now investigate the dependence of nucleation work W on rc. Using the Gibbs-Duhem

equation for the phase of the bridge, one can write:

�V(n)dP(n)/drc + N(n)d	(n)/drc = 0 (11.70)

Differentiating Eq. (11.65), along with Eqs. (11.66) and (11.70) one can derive

cdr
dW = � 

c

l

dr
dA   � 4�rc�cos�c + [P � P(n)(rc)]

cdr
dV )n(

 + [	(n)(rc) � 	]
cdr

dN )n(
(11.71)

The meniscus area and the volume of the bridge can be expressed in the form

Al  = 2� �
�

2/

2/

h

h

dz  r(z)(1 + rz
2)1/2  V(n) = � �

�

2/

2/

h

h

dz  r2(z) (11.72)

where r(z) expresses the meniscus profile in cylindrical coordinates and rz � �r/�z. Note, that in

general the meniscus profile depends on rc through the boundary condition at the contact line;

in other words r = r(z,rc). Differentiating under the sign of the integrals in Eq. (11.72) and

using integration by parts one can prove that

� 
c

l

dr
dA

 + [P � P(n)(rc)]
cdr

dV )n(
 =

= 2� �
�

�
�
�

� �
�

�
�

��
�

��

�
)n(

2/322/12

2/

2/ )1()1(
1 PP

r
r

rrr
rrdz

z

zz

zc

h

h

 + 4�rc�cos�c (11.73)

where rzz � �2r/�z2. The expression in the brackets must be equal to zero because the meniscus

shape r(z) obeys the Laplace equation, Eq. (2.23). Then substituting Eq. (11.73) into

Eq. (11.71) one obtains
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cdr
dW  =  [	(n)(rc) � 	]

cdr
dN )n(

(11.74)

In the theory of nucleation [81-86] the critical nucleus is defined as the nucleus with maximum

W. Then for the critical nucleus dW/drc = 0 and from Eq. (11.74) one obtains

	
(n)(rc*) = 	 (11.75)

that is the critical nucleus of contact radius rc = rc* is in chemical equilibrium with the ambient

mother phase. In view of Eqs. (11.67) and (11.68) this yields

P(n)(rc*) = P0 (gas bridge) (11.76)

P(n)(rc*) = P � (kT/Vm)ln(P0/P’) (liquid bridge) (11.77)

P is to be identified with the atmospheric pressure. Below the boiling temperature of the liquid

(say at room temperature) one has P(n)(rc*) = P0 < P for a gas bridge; likewise, the capillary

condensation usually takes place at humidity below 100 %, i.e. P’/P0 < 1 and then Eq. (11.77)

gives also P(n)(rc*) < P. As mentioned earlier, a negative pressure difference, P(n)(rc*) � P < 0,

can be attained only in capillary bridges with generatrix nodoid (�	 < p < 0, see Table 11.1).

11.4.2. CRITICAL NUCLEUS AND EQUILIBRIUM BRIDGE

The dependence W = W(rc) can be calculated in the following way. For given values of �c, h

and �c, from Eqs. (11.40) and (11.43) one calculates �0 and k1. The substitution of the results in

the expressions for the area and volume of nodoid-shaped bridge with neck (Table 11.1) give

Al(rc) and V(n)(rc), where rc = �c
 / | k1 | . Further, in view of Eq. (11.14) the capillary pressure is

[P � P(n)(rc)] = 2� | k1 | . Finally, a substitution of the results in Eqs. (11.65)�(11.68) gives

W(rc). For the smallest values of rc the (non-equilibrium) bridges are unduloids with neck, for

which W(rc) can be calculated in a similar way, but Eq. (11.37) with � = �c must be used

instead of Eq. (11.40).

Physical interest represent situations, in which h < hmax, where hmax denotes the maximum

possible length of the bridge, see Fig. 11.4. For 70� < �c < 90� one can estimate hmax with the

help of  Eq. (11.53).  For example, let us consider the case of nucleation of vapor-filled bridges
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Table 11.2. Values of the maximum possible length, hmax, of a vapor-filled equilibrium capillary bridge
between two hydrophobic plates in water as a function of the contact angle � (Fig. 11.4) at temperature
20�C, as predicted by Eq. (11.78).

� = � � �c 90� 94� 98� 102� 106� 110�

hmax  (nm) 0 103 205 306 405 503

in water at temperature 20�C. In this case the surface tension is � = 72.75 mN/m and the

equilibrium vapor pressure of water is P0 = 2337 Pa, which is only 2.3 % of the normal

atmospheric pressure at the sea level, P = 101 325 Pa. Equation (11.53) acquires the form

hmax = 
0

cos2
PP

c

�

��
(70� < �c < 90�) (11.78)

Table 11.2. contains numerical results for hmax calculated with the above parameters values.

One sees that hmax markedly increases when the contact angle � of the hydrophobic plate

increases beyond 90�. It is worthwhile noting that hmax is obtained from Eq. (11.52) for �c�	,

that is the limit for a large bridge, whose azimuthal curvature radius is much greater than the

meridional one, ra >> rm. For such bridges rm = �h/(2cos�c) and using Eq. (11.7) one obtains

that the length of the bridge is given again by Eq. (11.78) for every �c � [0�, 90�] (that is 90� �

� � 180�). In this way Table 11.2 can be extended for � > 110�; then the maximum possible

value of the gap width, corresponding to � = 180�, is hmax = 1470 nm.

The large equilibrium bridges (for which ra >> rm) can be considered as a result of the process

of nucleation, which begins with a fluctuational formation of much smaller capillary bridges. In

the theory of nucleation the small nuclei are generally out of chemical equilibrium with the

mother phase, and this is the reason why they could spontaneously grow owing to the addition

of new molecules to the nucleus.

A typical picture, originating from the theory of homogeneous condensation (and cavitation), is

that a critical drop (bubble) exists, corresponding to a maximum of the work of nucleation W,

i.e. to a state of unstable equilibrium, see e.g. Refs. [85,86]. If a molecule is added to the

critical nucleus it begins to grow spontaneously; on the contrary, if a molecule is detached from

the critical nucleus, it spontaneously diminishes and disappears. For example, in the case of
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homogeneous condensation of water vapors at 0�C and P’/P0 = 4 the radius of the critical

droplet was calculated to be about 0.85 nm [91, 86].

Let us consider now the case of nucleation (condensation or cavitation) of capillary bridges in a

narrow gap. The condition for extremum (maximum or minimum) of W determines uniquely

the pressure inside the (critical or equilibrium) nucleus, P(n), see Eqs. (11.76) and (11.77), and

the value of the parameter k1 = [P(n) � P]/(2�). Then the number of the extrema of W is equal to

the number of roots of Eq. (11.43) for the respective value of k1 and for the given thickness of

the gap, h, and contact angle �c. A maximum of W for some value of rc can be interpreted as

existence of a critical nucleus in a state of unstable equilibrium with the ambient mother phase.

A local minimum of W(rc) corresponds to a capillary bridge in state of stable equilibrium.

Additional information about the nucleation of liquid and gas capillary bridges can be found in

Refs. [90, 92].

11.5. SUMMARY

The role of capillary bridges has been recognized to be important for many systems and

phenomena such as adhesion of particles (dust, powders) to solid surfaces, consolidation of

granules and porous media, dispersion of pigments and wetting of powders, obtaining of latex

films, antifoaming, capillary condensation, bridging force in experiments with atomic force

microscope (AFM), attraction between hydrophobic surfaces, etc.

The capillary bridge force is oriented normally to the plane of the three-phase contact line and

its magnitude is determined by the contributions of the capillary pressure and the normally

resolved surface tension force, see Eq. (11.5). The simplest way to quantify the shape of the

capillary bridges and the capillary-bridge force is to use the toroid (circle) approximation

(Section 11.2.2). Like every approximation it has some limits of validity; moreover, there is an

ambiguity in the definition of the azimuthal radius of curvature, which results in different

expressions for the capillary bridge force, see Eqs. (11.8) and (11.11). For that reason more

reliable results can be obtained using the exact profile of the capillary bridge, which is

determined by the Plateau sequence of shapes: (1) nodoid with “neck”, (2) catenoid, (3)

unduloid with “neck”, (4) cylinder, (5) unduloid with “haunch”, (6) sphere and (7) nodoid with
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“haunch”. The capillary-bridge force is attractive for the shapes (1-5), zero for sphere (6) and

repulsive for the nodoid (7).

Expressions for the bridge shape, area and volume are given in Table 11.1. In addition,

equations connecting the radius of the bridge neck/haunch with the contact angle and radius are

derived in Section 11.3.2. For the reader’s convenience the procedures for shape calculations

are outlined for the cases of bridges between plane and axisymmetric body, and between two

parallel planes, see Eqs. (11.39)�(11.44). It is demonstrated that in the asymptotic case, in

which the contact angle belongs to the range 70� < �c < 90� (or 90� < � < 110� for hydrophobic

plates), the elliptic integrals reduce to elementary algebraic functions and the capillary bridge

can be described in terms of the toroid approximation, see Eqs. (11.52)�(11.54).

Some upper “geometrical” stability limits for the length of the capillary bridges are related to

the distances between the points with horizontal and vertical tangents of the nodoid and

unduloid, see Eqs. (11.56)�(11.69). The limits for the length of a catenoid-shaped bridge are

connected with the possibility to satisfy the boundary conditions with this special shape, see

Eq. (11.63). The real “physical” limits for the bridge stability can be established by analysis of

diagrams of volume vs. pressure, see Fig. 11.6 and its interpretation.

Finally, we consider the thermodynamics of nucleation of capillary bridges between two solid

surfaces. Two plane-parallel plates are considered as an example. The treatment is similar for

liquid bridges between two hydrophilic plates and for gas bridges between two hydrophobic

plates; in both cases the work of nucleation is determined by Eq. (11.65). Nucleation of

capillary bridges is possible when the distance between the plates is smaller than a certain

limiting value hmax, see Eq. (11.78) and Table 11.2. Equations for calculating the work of

nucleation and the size of the critical (and/or equilibrium) nucleus are presented.
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