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Abstract: A theoretical model for the dynamic surface tension of an air bubble 
expanding in surfactant solution is proposed. The model accounts for the effect 
of convection on the surfactant diffusion and the effect of expansion of the 
bubble surface during the adsorption of surfactant molecules. Assuming small 
deviation from equilibrium and constant rate of expansion, an analytical 
solution for the surface tension and the subsurface concentration as a function 
of time is derived. The parameters of the model are computed from experi- 
mental data for sodium dodecyl sulfate obtained by the maximum bubble 
pressure method. 
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Introduction 

Our previous paper [1] deals with the dynamic 
surface tension of surfactant solutions studied ex- 
perimentally by means of the maximum bubble 
pressure method (MBP-method). For this pur- 
pose air bubbles were blown with frequency v on 
the tip of a vertical glass capillary immersed up- 
wards in water surfactant solution. Measuring the 
time t (the reversal of the bubbling frequency) and 
the pressure in the system, we obtained the dy- 
namic surface tension a(t) of both micellar surfac- 
tant solutions and solutions without micelles. 
Here, we propose a theoretical model for the sur- 
factant transfer and adsorption at concentrations 
below the critical micelle concentration (CMC). 
The model accounts for the effect of convection on 
the surfactant diffusion in the vicinity of the 
bubble and for the effect of expansion of the 
bubble surface during the adsorption of surfactant 
molecules. Our treatment aims to prove the ap- 
proximations first made in the model for a much 
simpler system without micelles. Based on the 

results of this study, we will extend the model 
for the solutions containing micelles in our next 
paper [2]. 

The transfer of surfactant molecules to the 
bubble surface can be considered as a sequence of 
two processes [3]: diffusion from the bulk phase 
to the subsurface layer and adsorption onto the 
surface. It is proven in the literature [3-15] that 
for most of the usual surfactants, such as sodium 
dodecyl sulfate (SDS), the diffusion is much slower 
than the adsorption itself (diffusion controlled ad- 
sorption kinetics). There are two approaches to 
the diffusion controlled kinetics (for a review, see 
refs. [16, 17]). In the first approach the adsorption 
F(t) is expressed through the subsurface concen- 
tration �9 (t), where ~ is the surfactant concentra- 
tion in the subsurface layer. Practically, q,'(t) is an 
unknown function of t which can be found either 
i) experimentally [9, 16], or ii) by relating F and 

with an adsorption isotherm of a general type, 
F(~), and then numerically solving the respective 
set of equations [14]. The second approach allows 
analytical solutions for the adsorption only if 
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a linear relationship between F and 45 is assumed. 
This assumption is valid for dilute surfactant solu- 
tions [4, 5, 8, 16] or at small deviations from 
equilibrium [17]. Although the first approach is 
more general, the second approach is more useful 
for fitting experimental data and can also be gen- 
eralized for micellar surfactant solutions [18]. 

Usually, the data obtained by the MBP- 
method are interpreted in the frames of the fol- 
lowing two approximations to the adsorption 
kinetics: 

i) Long time approximation [19, 20] 

2RgTa F2 1 
o-(t) = 6 + (1.1) 

e , / T N '  

where Rg = 8" 314 X 10 v dyn" cm/mol" K is the 
universal gas constant, T, is the absolute temper- 
ature, 8 is the equilibrium surfactant concentra- 
tion, F is the equilibrium adsorption, and D is the 

surfactant diffusivity. The multiplier 2 on the 
righthand side of (1.1) is for anionic surfactant 
without added electrolyte. Recently, Garrett and 
Ward [20] fitted their MBP-data for SDS by Eq. 
(1.1). They introduced a characteristic time of dif- 
fusion, 

ZD = , (1.2) 

which was calculated to be about 5 x 10-as  at 
surfactant concentration 7 x 10 - 6  mol/cm 3. Eq. 
(1.1) is valid at t>>Zo. 

ii) Small time approximation [19, 21] 

tr(t) = ao -- 2RgTa~ D/_~, (1.3) 

where ao is the surface tension of pure water. 
Equation (1.3) is valid at t<<z D. 

Equations (1.1) and (1.3) are particular cases of 
the more general equation of Ward and Tordai 
[3], 

F ( t ) = 2 e  D N / - ~ - / D r  45(z )dz ,  (1.4) 

derived originally for quiescent interface of con- 
stant area. However, when an air bubble is blown 
up there are two effects which can additionally 
influence the adsorption kinetics. The first effect is 
the convection caused by the advancing bubble 

surface in the solution. The second effect is the 
expansion of the adsorbed surfactant layer during 
the bubble growth. One possibility to account for 
the contribution of these two effects [21-23] is 
based on the mathematical approach used in po- 
larography [243. In this case the final expression 
for the adsorption is given by [22] 

dr 

(1.5) 

The integral terms in the righthand side of Eqs. 
(i.4) and (1.5) vanish at small times when 45 ~ 0 
and then these two equations resemble Eq. (1.3) at 
a = Oo - Rg TaF [21]. Since this requirement can- 
not be satisfied every time, one needs an explicit 
time dependence of F (or 45) and a in order to fit 
experimental data. 

In Section 2 below we derive an equation for 
a(O by solving the respective diffusion problem at 
certain approximations: small deviations from 
equilibrium and constant rate of bubble expan- 
sion. In Section 3, we fit experimental data for 
SDS obtained by the MBP-method [1] and calcu- 
late the model parameters. 

2. Dynamic surface tension 

Let us approximate the bubble surface as in 
refs. [19-23] with a plane placed at x = 0 so that 
the x-axis is directed toward the bulk of solution. 
The diffusion of surfactant molecules is described 
by the following equations: 

(~C ~C ~2C (2.1) 
& + = D ?x-- 5 

l d ( A r )  = D Oc (212) 
~X x=0 

c(0, t) = 45(0 (2.3) 

c( oo, t) = 6 (2.4) 

c(x,  O) = 6 (2.5) 

c(0, 0) = 450 (2.6) 

F(0) = F0. (2.7) 
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Here, c(x, t) is the bulk surfactant concentration, 
V(x, t) is the velocity of hydrodynamic flow in the 
solution caused by the bubble growth, A(t) is the 
area of the bubble surface in contact with the 
surfactant solution; ~o and Fo are the initial 
values of the subsurface concentration and ad- 
sorption, respectively. If a(0) = ao (surface tension 
of pure water), then (bo = 0 and Fo = 0. We solve 
Eqs. (2.1)-(2.7) at the following approximations: 

i) Small deviations from equilibrium: 
[c - g[<<~, IF -/al<</v, [a - ~1<<6. For typical 
data for the surface tension O-o = 72 dyn/cm and 
6 ,,~ 50 dyn/cm,  the deviation o-o - 6- ,,~ 22 
dyn /cm is sufficiently less than the equilibrium 
value 6-. In this case the adsorption and the surface 
tension can be expanded in series 

A r ~  

r(t) = F + [c(O, t) - e ]  (2.8a) 

dff 
a(t) = 0 + ~ [c(0, t) - g ] ,  (2.8b) 

where the derivatives are calculated at c = g. The 
derivative 

dF 6i, = -a-g 

has the meaning of a characteristic length of diffu- 
sion [15, 17, 18]. 6i~ is a measure for the thickness 
of the subsurface layer. 

ii) Hydrodynamic  velocity represented as [21] 

V(x, t) = - d~(t)x , (2.9) 

where & is the rate of expansion of the bubble 
surface 

1 dA 
& = A d--t" (2.10) 

In our case, we will assume that & is a constant 
throughout  the bubble expansion (for comments 
see Section 3). 

To further simplify Eq. (2.1), we assume that the 
adsorption is influenced mainly by the hy- 
drodynamic flow in the subsurface layer of thick- 
ness 6D, i.e., the velocity (2,9) is given by 

V =  - 0i6o = const .  (2.11) 

Hence, Eqs. (2.1), (2.2), (2.4)-(2.6), and (2.8a) read 
in dimensionless variables: 

~T a ~  - c~X2 (2.12) 

a(b + 4) = g~X x=o (2.13) + 

4( oo, T) = 0 (2.14) 

{(X, 0) = 0 (2.15) 

3(0, 0) = 40, (2.16) 

where 4(X, T) = (c - g)/g is the relative deviation 
of the surfactant concentration from its equilib- 
rium value, 4 o = ( ~ o - C ) / C ,  a = ~ r o ,  b =  
ff/(gaO), X = x / a m  T = t/'CO, and 

1 (d f f~  2 
"Co = ~ \~-~ ] (2.17) 

is the characteristic time of diffusion. 
Equations (2.13)-(2.16) were solved by means of 

Laplace transformation to obtain the image of the 
subsurface concentration. After that this image 
was inverted (Appendix A) and the subsurface 
concentration 4(0, t) was related to the surface 
tension by Eq. (2.8b). The final result is 

A (T) 
Acro 

3(0, T) 1 o2Tf 6)EI(1 6)EI(1 
~-o - ~ e - T t ( 1  + + - (1 - - 

E o ~ l  1 a2r ( a ~ 2 T )  
+ 2 A a o [  + 2  e - = - E  

+ ~ e - ~ - t [ 6 - a - 3 ( l + G ) ] E  ( I + G )  

(2.18) 
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where Aa = a(t) - 0, Aao = a(O) - 8 ,  

G = x//1 - a(6 - a) (2.19a) 

E(z) = e z2 erfc(z) (2.19b) 

e-r~dy = 1 - erfc(z) (2.19c) erf(z) = 
0 

EG is the Gibbs' elasticity given by 

- d 6  
EG = -- F ~ .  

dF 

Equation (2.18) represents the relaxation of the 
surface tension affected by the convection and the 
expansion of the bubble surface. Due to the ap- 
proximations made, both effects are accounted for 
by the dimensionless parameter a = ~ZD. For 
a quiescent interface (no convection and expan- 
sion) a = 0 and G = 1 from Eq. (2.19a). In this 
case (2.18) reduces to the known result [-4, 15, 17]. 

Aa(T) 
A ao - E(x ' /T )  " (2,20) 

The righthand side of Eq. (2.20) can be expanded 
in series to give [5] 

E(x/@ ) ~ , ~  at T>> I (t >> zD) 

E(x/@) ~ 1 - at T<<I(t<<~D). 

Hence, Eqs. (1.1) and (1.3) are particular cases of 
(2.20). 

An alternative approach to derive Eq. (2.20) 
from Eq. (1.4) by means of a model subsurface 
concentration is given in Appendix B. 

3. Discussion 

An essential point of our treatment is the con- 
stancy of the rate of expansion of the bubble 
surface &. The bubble area A increases with time 
during the two stages of bubble growth 1,19]: 
i) formation of a hemispherical bubble and 
ii) transition to a spherical bubble (after that the 
bubble escapes from the capillary tip). As accepted 
in literature, important  for the dynamic surface 
tension is only the first stage since at the end of 
this stage the pressure inside the bubble reaches 

its maximum value equal to the capillary pressure. 
Hence, the surface tension o-(t) corresponds exact- 
ly to the end of the first stage, while the duration 
of the second stage is accounted for in the dead- 
time correction of the actual time. The bubble 
surface can be expressed as 

A ( t ) = 2 , R 2 [ I G ~ I - - ( ~ ) ' I ,  (3.1, 

where R~ is the capillary radius (minus refers to 
the first stage, plus refers to the second stage of 
bubble growth). Since the bubble radius R(t) is 
not known in our experiment I-1] the exact time 
dependence of A (and &) cannot be found. In the 
same situation different approximations for & are 
used in the literature: & = 2/(30 [21] or & = 0.1/t 
1-25, 26]. In contrast to them, we assumed that the 
rate of expansion & is simply constant. 

An idea for the validity of this assumption is 
given in Fig. 1 which is a typical plot of the bubble 
area as a function of time obtained recently in 
independent MBP-experiment [27]. In this case 
the bubble radius R was measured as a function of 
time from video record and the bubble area A(t) 
was calculated using Eq. (3.1). The solid line is the 
best fit of the data for individual bubbles of differ- 
ent life time 1Iv. The bubble area A increases at 
the beginning of the bubble growth while after 
that A does not change appreciably. The final 
increase of the bubble area beyond 2rcR 2 is not 
important  for the dynamic surface tension since 

3 . 0  0 . 1 0  

0 . 0 8  
2 . 5  

0 . 0 6  

~ 2 . 0  

~ 0 . 0 4 ,  
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1 .0  ' : " - , - - - ;  . . . . . .  , ,---,---? . . . . . .  i " ' "  ~ ' 0 . 0 0  
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Fig. 1. Typical time dependence of the area of a single bubble 
expanding in SDS solution with electrolyte sodium chloride 
below CMC [27] (v - bubbling frequency). The rate of expan- 
sion a = 0~D remains nearly constant during the intermediate 
stage of bubble growth 
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this stage corresponds to the dead-time correc- 
tion. From the numerical fit of the area (poly- 
nomial of ninth order), we calculated & by using 
Eq. (2.10). Except at the beginning (and at the end) 
of bubble growth the rate of expansion (dashed 
line) remains almost constant, which supports the 
assumption made in Section 2. 

The effect of the rate of expansion on the dy- 
namic surface tension is illustrated in Figs. 2 and 
3. The computations are carried out at 
E~/(2A~o) = 1 which is close to the values ob- 
served experimentally. The numerical procedure 
at different values of a is described in Appendix A. 

A g -  
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0.05 _ 

I I ~ I I I I I I 
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Fig. 2. Dynamic surface tension as a function of time cal- 
culated by Eq. (2.18) at different expansion rates a (for details 
see Appendix A) 
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Fig. 3. Dynamic surface tension as a function of the expan- 
sion rate a calculated by Eq. (2.18) at different times T 

At the beginning of relaxation (end of perturba- 
tion) the surface tension equals its initial value 
tr(0), i.e., A~/A~o = 1. The first term on the right- 
hand side of Eq. (2.18) accounts for the relaxation 
of the surface tension due to diffusion of surfac- 
tant, while the second term accounts for the effect 
of expansion of the bubble surface. Both terms are 
affected by the convection and expansion through 
the parameter a. The first term always decreases 
with time, which leads to a decrease of the surface 
tension. At small times, T _< 1 (t _< "CD), this term 
predominates because the diffusion of surfactant 
molecules prevails over the expansion of the 
bubble surface. As a result, the number of adsor- 
bed surfactant molecules is larger than the num- 
ber of surface sites created by the expansion of the 
monolayer. At that, the smaller the rate of expan- 
sion the more effective the diffusion of surfactant 
(Fig. 2). At T > 1 (t > %) the second term starts to 
dominate and the surface tension increases. Since 
the bubble expansion prevails over the surfactant 
diffusion, the local disturbance in the monolayer 
cannot be compensated by adsorption of surfac- 
tant molecules. Similar behavior of the interfacial 
tension was observed experimentally with an oil 
drop expanding at constant rate in surfactant 
solution [-28]. 

To compare the model with the experiment, as 
a first step we fitted the MBP-data assuming 
a = 0 because the rate of expansion & was not 
known in our experiment [1]. Since the initial 
value of the surface tension, ~r(0), was also not 
known, it was better to transform the data for the 
surface tension ~(t) in data for the subsurface 
concentration ~(t). According to ref. [9], ~(t) is 
assumed equal to the surfactant concentration 

of a solution of equilibrium surface tension 
o- equal to the dynamic surface tension o-(t) at the 
same moment t. The experimental values of ~0(t) 
thus obtained are plotted in Fig. 4 where different 
figures correspond to solutions with different sur- 
factant concentration ~. 

The solid curve in Fig. 4 represents the numer- 
ical fit of the data drawn by the equation 

(3.2) 

Equation (3.2) is a particular case of Eq. (2.20) at 
~>> ~o ~ 0. The diffusion time constant ZD is given 
either by Eq. (1.2) or by Eq. (2.17). Both equations 
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coincide for dilute surfactant solutions when 
d F / d g  = / v / g  = 5D" The experimental data were 
fitted by the method of Hooke and Jeeves [29]. 
The sum of squares of the differences between 
theoretical and experimental values of ~b(t) was 
minimized using one adjustable parameter, ZD. 
The calculated diffusion times % listed in Table 
1 are in the millisecond region as are the ones 
reported in ref. [20]. As seen, "rD tends to decrease 
with increasing the surfactant concentration be- 
cause the amount  of free surfactant molecules 
increases in the solution. 

Knowing ZD, we calculated the diffusion length 
5D. The concentration dependence of the diffus- 
ivity of SDS monomers  was accounted for by the 
formula 

D(g) = 5.656 x 10 -6 4- 2.98 x 10-e~ - 11700( 2 , 

cbJ  
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Fig. 4. The subsurface concentration of water solutions of 
SDS with different surfactant concentration (mol/cm3): 
2X10  -6 (O); 3X10 -6 (O); 4 x 1 0  -6 ([~); 6 x 1 0  -6 (R); 
7 x 10 -6 (at), data from ref, [20]; 8 x 10 -6  (A). The solid line 
is drawn by Eq. (3.2) 

which was obtained by fitting data for D published 
in ref. [30] (~ is in mol/cm3). Since 5D can be 
identified either with the derivative d/V/dg or with 
the ratio /~/? the experimental values of 5o are 
compared in Table 1 with both dF/dg  and F/& 
The latter were calculated from the empirical equa- 
tion of Mysels [31] for &(g) of SDS by the formula 

1 dO / 7 =  _ 

2Rg T~ d~ " 

The values of 5D computed from the MBP-data 
are always lower than the respective values cal- 
culated from equilibrium experimental data. This 
can be due to the approximations made in the 
theory. F o r  example, the diffusion penetration 
depth is given most probably by 5D = 
rather than with the equilibrium values accepted 
in our model. 

We tried also to estimate the expansion rate by 
fitting the data for ~0(t) using Eq. (2.18) with two 
adjustable parameters: 0i and zD. The values of vD 
calculated in this way were only slightly different 
from those listed in Table 1 at 0~ = 0. On the other 
hand, the parameter a = 02% (dimensionless rate 
of expansion) was between 0 and 0.01, i.e., too 
small to appreciably affect the surface tension 
relaxation (cf. Fig. 2). Even though a seems small, 
the surface tension relaxes more slowly at a 4:0  
than at a = 0. Therefore, the value of the diffusion 
time ZD estimated from the curve a = 0 will be 
greater than ZD at nonzero a. This leads in turn to 
greater values of 5D than the ones obtained from 
equilibrium data. 

One important  point of our treatment, as well 
as of the treatment of the other authors working 
on the same subject, is the disregard of the surface 
tension gradient (effect of Marangoni). Such 
gradient arises when the adsorption F varies 

Table 1 Parameters of SDS solutions 

X 10 6 "C O X 10 3 D • 10 6 3D X 10 4 (if~g) x 10 4 (dF/d~) x 10 4 
(mol/cm 3) (s) (cm2/s) (cm) (cm) (cm) 

2 11.0 5.67 
3 12.0 5.65 
4 15.0 5.59 
6 12.0 5.41 
7*) 5.8 5.29 
8 8.1 5.15 

2.5 1.1 0.7 
2.6 0.9 0.5 
2.9 0.8 0.3 
2.6 0.6 0.2 
1.8 0.6 0.2 
2.0 0,5 0.2 

*) MBP-data  from ref. [20]. 
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along the bubble surface. One possibility to vary 
the adsorption is a nonuniform expansion of the 
air bubble which will result in local differences of 
the number of molecules per unit area. Another 
possibility is the removal of surfactant molecules 
from the subsurface layer, tangentially to the 
bubble surface, in the course of bubble growth. 
This situation resembles the one described for 
a fluid particle moving in surfactant solution 1-24]. 
In this case the number of adsorbed molecules on 
the bubble apex will decrease while the number of 
molecules near the bubble equator will increase. If 
this is so, an additional surface stress directed 
from the bubble equator to the bubble apex will 
arise. This stress can effectively alter the surface 
tension measured in the MBP-experiment. To ac- 
count for the Marangoni effect, one should intro- 
duce two new terms in the boundary condition 
(2.2): one of them for the local variation of F and 
another for the surface diffusion of surfactant 
tending to restore the uniformity of F in the 
monolayer. However, the introduction of an addi- 
tional space variable will substantially complicate 
the mathematical treatment. To the best of our 
knowledge, similar problems are solved in litera- 
ture only for stationary diffusion: motion of 
a fluid drop 1-24] and thinning of a liquid film 
[32]. Also, the assumption (2.9) could not be ap- 
plied in this case because it is valid for an uniform 
expansion. Finally, the procedure for experi- 
mentally calculating the dynamic surface tension 
from the maximum bubble pressure used in litera- 
ture should also be revised since it assumes that 
the surface tension is uniform along the bubble 
surface. All these complications go beyond the 
scope of our paper and might be a subject of 
future investigation. 

The theoretical approach presented in this 
study will be generalized in the next paper [2] for 
the dynamic surface tension of surfactant solu- 
tions containing micelles. 
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Appendix A 

The Laplace image of the subsurface concentra- 
tion is 

1 

4o / a 2 3a 

P+ , , /P+7+T  
aEa 1 

P P +  + ~-- + - -  

By replacing the transformation parameter p with 
a new one, q = p + a2/4, Eq. (A.1) can be written 
a s  

p) 
4o q + x /~  + a(6 - a) 

4 

1 aEa + 

+ x/q + a(6 4 -- a ) ) "  

(A.2) 

The first term on the righthand side of Eq. (A.2) 
can be expressed as 

1 
q + x/q + a(6 - a) 

4 

Is) = f l  7 x + x / q  7 +  

where fl = (1 - G)/2 and 7 = (1 + G)/2, while 
the second term can be expanded as 

a 2 a(6 - 

1 1 1 1 

+ 

a 2 a 2a 2 a 

+x//~ 2 x//q 

3a 

2 1 

2ag( f l -  7) fl + x/q 

3a 
1 - 7  2 1 

2a2(/ - 7)7 + 

By inverting the Laplace images, we obtain Eq. 
(2.18). 
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There are three cases of Eq. (2.18) in depend- 
ence on the parameter a: 

i) a < 3 - 2xf2 = 0.1716 or 

a > 3 + 2 x / ~ = 5 . 8 2 8 4 ( 0 < G _ <  1). 

In this case the function E(z) is computed by 
numerical integration of (2.19c) when z _< x/-io, or 
by the approximate formula 

[ 6 1.3.5 ... (2n + 1)] i2z-~  E ( z ) ~ _ _  1+ ~] (-1)" x/~z n = l  

when z _> ~ [17]. 

ii) a = 3 - 2 x / ~ o r a = 3 + 2 , v / 2 ( G = 0 ) .  

In this very special case, one should take the 
limit G--, 0 in Eq. (2.18) to obtain 

A (T) = + T , f T  T 

EG '[1 1 ~r{ ( ~ ) ( # )  
+ 2 A o ' o (  + 2  e - T  E - 3 E  

-- (3 - a ) [ ~ / ~  + T E ( ~ 2 T ) ] } }  , (A.4) 

iii) 3 - 2x/~ < a < 3 + 2x/~ (G-imaginary 
number). 

In this case, we substitute G = iGo in Eq. (2.18) 
where i is the imaginary unit and 
Go = x/a(6 - a) - 1. Using the complex variable 
z = ~ + ico with ~ = G o x / ~ / 2  and co = x/@/2, 
one can write E( - iz) = w(z) and E(iz*) = w*(z) 
where the function 

w(z) = e-z2 erfc( - iz) = u + iv 

is tabulated in ref. [33] ( z * =  ~ - i c o  and 
w* = u - iv). As shown in ref. [17] the functions 
u and v can be expressed as 

u(~, co) = -~-2 e'~ 7 e-~2 c~ r -- co)] dr 

v(~, co) = 2-~e'~ 7 e- '~ sin[2~(z - co)] d r .  

Particular cases of the last two equations are 

2 
u(~, 0) = e -~2 and v(~, 0) = ---Fe-~r ~ or," 

x/r~ o 

and u(0, co) = E(co) and v(0, co) = 0, respectively. 

In these notations Eq. (2.18) becomes 

- e - ~ - t u  -- Aao Goo ) 

+ 2 - ~ o  1 + 2  e - T  E 

- 3 u  ( 3 -  a)vl~ (A.5) 
l J  

Appendix B 

An explicit time dependence of F can be 
obtained also if ~(t) is a known function of time 
(see Eq. (1.4)). Based on the results of Section 2, we 
choose a model subsurface concentration in the 
form 

= - E  t 

The constant VD in Eq. (B.1) will be determined 
thereafter. To integrate (1.4), one should calculate 
the integral 

I(t) = S d r .  (B.2) 
o \ / t - - r  

We integrate (B.2) first by parts 

I(t) = 2xfft - . / ~  t + __2J, (B.3) 
X/ZD rD  

where 

t t - - r  

By differentiating J(t)  with respect to time, one 
obtains the following differential equation 

dJ  J = W/~ N/-~ t 
dt "CD 2 ' 
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whose  so lu t ion  is 

J ( t ) =  zD -- ~ t t  + 2 

+ ~ 1 - E . (B.4)  

C o m b i n i n g  Eqs (B.3) and  (B.4), one  obta ins  finally 

which gives for  the adso rp t i on  

In the limit F (  oe ) = / ~  it follows f rom (B.5) tha t  
zD is given by  Eq. (1.2). 

The  a p p r o a c h  d e m o n s t r a t e d  here  is valid no t  
only  at small devia t ions  f rom equi l ibr ium but  for  
any  mode l  subsurface  concen t r a t i on  which obeys  
the condi t ions  ~b(0) = 0 and  ~b( oe ) = ~. In princi- 
pal, it can  be appl ied  also to  derive Eq. (2.18) by  
choos ing  ~b(t) of an  app rop r i a t e  form. 
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