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We compare the expression for the Laplace pressure across a
general curved interface of local mean and Gaussian curvatures,
H and K, derived by Boruvka and Neumann, J. Chem. Phys. 60,
5464 (1977)., with a corresponding expression given in terms
of the mean and deviatoric curvatures, i and D, obtained by
Kralchevsky, J. Colloid Interface Sci. 137, 217 (1990}, The two
expressions are shown to yield exactly the same result when the
contribution due to the thermodynamic surface shearing tension,
{, is negligible. In the case of a general curved interface, the
mechanical {¢) and thermodynamical () interfacial tensions
are different, and alternative expressions for the Laplace pressure
can be based on either of these two quantities. They are compared
and discussed for the special case of an interface that obeys the
Helfrich bending energy expression. @ 1993 Academic Press, Inc.

INTRODUCTION

In the buik of a bicontinuous Winsor 111 ( middle) micro-
emulsion phase which coexists with excess oil and water
phases, there are internal, surfactant-laden oil-water inter-
faces, seemingly in the form of thermally agitated, periodic
minimal surfaces (1, 2). An analogous situation is encoun-
tered with L; (sponge) phases where (swollen) bilayers sep-
arating etther oil or water domains are present. likewise
shaped similarly as distorted periodic minimal surfaces, and
perhaps also in certain bicontinuous cubic liquid crystals.
In all of these cases we may hence assume that the equilib-
rium configuration of the extended internal interface cor-
responds approximately to an infinite periodic minimal sur-
face. Such an interface is characterized by a mean curvature,
H = L(¢, + ¢), that is everywhere equal to zero and a
Gaussian curvature, K = ¢, ¢z, that varies with the curvilinear
coordinates along the interface, from some negative mini-
mum value to a maximum value equal to zero at the flat
points.

Moreover, it is an important experimental condition for
the formation of a fluid structure of this kind that the inter-
facial tension + attains some ultralow minimuem value, below
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about 107? mN m !, at the spontaneous curvature, H,. In
addition, H, must be adjusted to zero (2). Hence, we are
dealing with a regime where curvature effects have to be
taken into account explicitly.

We may base a theoretical description of a fluid, ther-
modvnamically open, interface composed of sofuble com-
ponents in a Winsor I1I or Li phase on an ansatz as to its
superficial excess free energy density, i.e., its thermodynamic
{Gibbsian) interfacial tension, ¥y, of the general type

’Y=’Y(T,.LL;,H,K) [1]
or, alternatively,

¥ =T, w, H, D), 2]
where D stands for the deviatoric curvature, (e, — ¢3).

In particular, we note that the Laplace pressure, Ap, across
an internal interface in a bicontinuous Winsor 111 or L; phase
must vanish at equilibrium, since, otherwise, the physico-
chemical equilibrium condition, g; = constant, cannot be
satisfied throughout the system. As we have discussed earlier
(2), an expression for the Laplace pressure results from min-
imizing the grand Q-potential of the interfacial system, sub-
jecl to a constraint of constant chemical potentials, This is
in full analogy with the conventional way of deriving the
Young-Laplace equation for the case of an interface of uni-
form curvature.

Toward this background one realizes that we need to have
available a generalized expression for the Laplace pressure,
Ap, that includes the case of an interface of nonuniform cur-
vature. For the less general case of a quasi-uniform (i.e., with
slowly varying curvatures} interface, and an arbitrary divid-
ing surface, the following expression was derived by Murphy
(3) and was given on a slightly different, less transparent,
form by Melrose (4)

Ap = 2Hvy — C\(2H? — K) — 2C,HK, [3]

where C, ={0v/0H) 7, x and C; = (8¥/0K) 4. It should
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be pointed out that the derivation made by Melrose of this
expression for Ap is based on considerations of parallel dis-
placements of the dividing surface which are proper only in
the case of interfaces with slowly varying or constant cur-
vature. Hence, it is applicable, ¢.g., to spherical or cylindrical
microemulsion droplets in Winsor type microemulsions
where a Ap = 0 condition is also of fundamental importance
(5). Since the correct expression for Ap may be of interest
also in other connections we shall discuss the Laplace pres-
sure below in a general manner.

GENERAL EXPRESSIONS FOR THE LAPLACE
PRESSURE

For the more general case of an interface of non-uniform
curvature, essentially two universal Ap-expressions have been
presented in the literature, one due to Boruvka and Neumann
(6)in 1977 and one due to Kralchevsky (7) in 1990. Mur-
phy’s theory (3), later on quoted by Neogi and Friberg (8},
was originally intended to cover also the case of nonuniform
curvature but due to a mathematical inadvertency, subse-
quently pointed out in Ref. (7), it is actually valid only for
quasi-uniform surfaces. In addition, Markin er @/. (9) stressed
that Boruvka and Neumann’s definition of the surface ten-
sion differs from the Gibbs surface tension that is commonly
used. If we account for this purely formal difference, Boruvka
and Neumann’s expression for the Laplace pressure has the
following form

Ap=2Hy — C,(2H? — K) — 2C,HK

-~ }9EC, - KVE -(VsCy)  [4]
and is valid for an arbitrary dividing surface. Here V% is the
Laplace-Beltrami operator on the surface and V§ = »%,V;
(where b = —¥gn is the second fundamental tensor of the
surface) is a special operator introduced by Weatherburn
(cf. Ref. (10)). The last two terms containing Vg and V% of
the above Ap-expression drop out, of course, for an interface
of quasi-uniform curvature where vy is (approximately) in-
dependent of the curvilinear surface coordinates.

The Boruvka and Neumann expression, Eq. [4], encom-
passes in essence the “vesicle shape equation” derived by
Ou-Yang and Helfrich (11) by means of a vanational ap-
proach for the special case of a geometrically closed bilayer
interface obeying the ordinary Helfrich bending energy
expression {cf, Ref. (2)):

Ap = 2H~o — dkAH — H)H? + HHy — K) — 2k ViH
= 2H~,, — 4k [H(H? — K) + H,K] — 2kV%H, [5]
where v4 = v (H = Hy, K = 0) and where k, and k_ are two

{state-dependent) constants relating to variations of the mean
and Gaussian curvatures, respectively. The constant -y, de-
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notes the interfacial tension of the planar interface.
Now, by invoking the identity

KVe =2HVs— bV [6}
which results from the definition of the Weatherburn oper-
ator (10), V¥, we obtain the relation

KVE-VsCy = 2HVEC, — b : VsV (s, [7]
where, as above, b = —Vn is the second fundamental tensor

of the interface, n being the surface normal. Hence, the Bo-
ruvka and Neumann expression can be rewritien as

Ap = 2Hy — C,(2H* — K) — 2C,HK

- %V%Cl - 2HV§C2 +b '.stSC2. [8]
The corresponding Ap-expression derived by Kralchevsky
(7) by a variational method, employing A and D as the cur-
vature variables, has the following form

Ap=2Hy + 2Dt — (H? + D*)B

—2HDO — Y(a*B + ¢70),. [9]
after correction for an unfortunate mistake in Ref. (7) where
it was erroneously assumed that the covariant derivatives of
the components of the tenser q, i.e., g4,,., are equal to zero.
In this equation, B and O are the sum and difference, re-
spectively, of the eigenvalues of the bending moment tensor,
cf., Ref. {(12). In the case of a surfactant-laden interface in
full equilibrium with the solution we have B =
(dy/8H)y,, pand O = (dy/d D), . Furthermore, a*” are
the contravariant components of the first fundamental tensor
of the interface whereas the tensor q is defined in the Ap-
pendix. The term 2 D¢ will be discussed below.

From the definitions of D, B, and © one derives the re-
lations

D=VIF—K
B=C +20C,H
0-=-20,D

[10]
(1]
[12]
by means of which we can readily establish that

(H>+ D)B + 2HDO = C,(2H? — K) — 2C,HK. [13]
Moreover, in the Appendix it is shown that

$(@”B + ¢*0),, = 1ViC, + 2HVC, — b : ViVs(, [14]

implying that the above expression given by Eq. [¢] for Ap
may be written in the following alternative way
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Ap = 2Hv + 2D - C\(2H? — K) — 2C:HK

—1viC, - 2HVEC, + b : ViV, [15]
which differs from Boruvka and Neumann’s expression only
by the presence of the additional term 2 D{.

The variable { introduced by Gurkov and Kralchevsky
(12} is the thermodynamic shearing tension and it corre-
sponds physically to the free energy per unit area needed to
elastically shear an interface while keeping its extension un-
changed. Formally, { is related to the mechanical shearing
tension, n, by means of the equation (12)

{=n+3iBD+ 1OH [16]

with 5 being defined by

1= 1(0, — 03), [17]
where ¢, and o, are the principal components of the { me-
chanical) interfacial stress tensor. Moreover, in terms of these
components we also define the mechanical interfacial tension

o= 3(0 + o2) [18]
and an equation similar to Eq. [16] serves to relate ¢ and vy
(cf., Ref. (12)):

o=y~ }BH - 10D, [19]

Upon combining Egs. [9], [16] and [19] we obtain

Ap =2He + 2Dy — L(a*B + ¢+0),, [20]
which is an alternative (and more compact) form of the Ap
expression, Eq. [9]. Asshown in Ref. (13), Eq. [20] can be
independently derived in a more direct manner as a normally
resolved local surface balance of the linear momentum.
Hence, in this way we are able to confirm the validity of Eq.
[9] by means of referring to the force balance perpendicular
to the interface,

APPLICATION TO HELFRICH INTERFACES

Remaining questions are what values the difference be-
tween the mechanical and thermodynamical interfacial ten-
sions, o and +y, as well as between their shearing counterparts,
nand { may assume. To elucidate this point, let us consider
a partly closed interface in the thermodynamical sense and
let us specify its flexural rheology. A frequently employed
model of Helfrich ( 15) implies that the free energy of purely

flexural deformation per unit area, wy, can be written in the
form:

wp= 2k (H — Hy)® + k.K, [21]
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where, as already noted above, k. and k, are (state-dependent )
coefficients of bending and torsion elasticity and Hj is the
spontaneous meah curvature (a spontaneous deviatoric cur-
vature is not introduced in this model). For the sake of brev-
ity we shall call each interface for which Eq. [21] holds a
Helfrich interface. Since K = H* — D?, in accordance with
Eqg. [87]in Ref, (12}, one derives keeping T and the appro-
priate chemical potentials constant, and the state of dilata-
tional and shearing strain fixed:

B = (dwy/dH) = dk(H — Hy) + 2k H,  [22]

and

O = (ow;/dD),; = —2k.D. 23]
Substitution of Eqs. [22] and [23]into Eqs. [19] and [16]
now yields

v — o = 2k, HH — Hy) + kK, [24]

and

t—n=2kD(H - Hy). [25]
In the special case where { = (0 we obtain from Eqs. [24]
and [25]

oy =+ — 2k(H — H)(H + D) — kK [26]

o> =y — 2k (H — H)(H ~ D) — kK [27])
showing that the surface stress tensor is in general anisotropic
even when {= 0.

Turning next to a spherical interface with arbitrary { and
with D = 0 and K = H?, Eqs. [24] and [25] reduce to

y=0+BH = ¢~ 2k.HHy + (2k. + k)H? [28]

and

{=mn, [29]
respectively. The first of the above equations, Eq. [28], im-
plies that ¥ = ¢ when B = 0, i.¢., when employing the surface
of tension as the dividing surface, the location of which be-
comes determined by the condition H/Hy = 2k./(2k, +
%.), whereas Eq. [29] shows that the surface stress tensor is
always isotropic for a spherical Helfrich interface for which
&= 0.

For the special case of a cylindrical interface (D = H, K
= ()) we derive from Egs. [24] and {25] that

Y—o =2k H(H—-H)={—n [30]
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Hence, in contrast to the spherical case one generally has
that { # »n for a cylindrical Helfrich interface. It is only when
H is equal to the spontaneous curvature, f1;, that we obtain
v = ¢ and { = 5. It may also be worth noting that for a
cylindrical interface such that { = (0 we get from Eqgs. [26]
and [27]

o) =5 — 4k H(H ~ Hy) [31]

and

a2 = 7, [32]
where the subscript 2 refers to the direction along the cylinder
axis.
Finally, let us specify the expression for Ap in the case of
a general Helfrich interface of arbitrary shape. By using Egs.
[221,[23], [A.2], and Codazzi’s equation (see Appendix)
one derives the relationship
(a*B + ¢*0), = 4k H*. [33]
It is noteworthy that Eq. [ 33] does not contain k.. Then by
substituting Eq. [33] into Eq. [20] we obtain
Ap = 2Ho + 2Dy — 2k V3H, [34]
where, in the case of an interface composed entirely of soluble
components and such that { = 0, 2(He + Dn) equals the
sum of the corresponding terms in Eq. [5].
For capillary waves of small enough amplitude, u#, on a
flat interface, Eq. [ 34] can be linearized. One has {17)
2H =~ Viu; Ap = guip, [35]
where Ap is the density difference between the two neigh-
boring phases and g is the gravity acceleration. Note that in
the linear approximation which is valid insofar as the qua-
dratic terms with respect to the curvature are negligible, we
have o = v and 4 = {, cf,, Eqs. [24] and [25]. Then, fora
fluid interface with » = ¢ = 0, Eq. { 34] reduces to
YViu — kN tu = gulp. [36]
In particular it follows from Eq. [36] that the mean square
amplitude of the thermal corrugations with wave number ¢
reads (16, 18)
(uly = kaTA ' (ghp +va* + kgD ™', [37]
where 4 is the area of the interface and kg is the Boltzmann
constant. Eq. [37] is widely used to calculate v = v,, and

k. from data on light scattering due to capillary waves (16).
QOur analysis confirms that Eqs. [36] and [37] do not contain
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the Gaussian (torsion) elasticity, k.. Furthermore, the ap-
proximations made above can be shown to be valid for v,
= 107 N/m,

DISCUSSION AND CONCLUSIONS

1. We have demonstrated above that the two forms of
the generalized Laplace equation, Egs. [4] and [9], derived
in Refs. (6) and (7), respectively, are equivalent when the
contribution of the shearing tension is negligible {({ = 0).
Moreover, the absence of a {-term in Eq. [4] is not indicative
of any major disagreement with Eq. [9] since, in effect, Bo-
ruvka and Neumann implicitly assumed { = 0 from the very
beginning of their treatment.

2. For a general curved interface, the mechanical and
thermodynamical interfacial tensions are different (v # o,
{ # n) and, correspondingly, there are in the main two dif-
ferent but equivalent expressions for the Laplace pressure.
One of them, Eq. [9] or Eq. [15], is formulated in terms of
v and {, and the other, Eq. [20], in terms of ¢ and 5.

3. Two alternative definitions of a fluid interface are con-
ceivable which are based either on the thermodynamic in-
terfacial properties or on the corresponding mechanical
properties. According to the former definition, the work of
local interfacial shear deformation of a fluid interface should
be zero, 1.e., { = 0. However, Eqgs. [16], [26] and [27] show
that even when ¢ = 0, the mechanical shearing tension, 7,
is not necessarily equal to zero; i.e., the surface stress tensor
may be anisotropic for such a fluid interface at quasi-static
conditions.

Alternatively, one may define a fluid interface by means
of a two-dimensional version of Pascal’s law, that is, the
surface stress tensor is required to be isotropic, hence o, =
a> and n = 0, However, in such a case the work of shear is
not always zero but is determined by the bending and torsion
moments, i.e., { = (BD + OH)/2, cf,, Eq. [16]. According
to this expression ¢ = 0 only for planar and spherical ge-
ometries. One realizes that the two alternative definitions of
a fluid interface are not equivalent for a general curved in-
terface. The above complications originate from the fact that
a flexural deformation of a surface is usually coupled with
a shear deformation and vice versa. Of course, it is largely
a matter of convention what is to be called a “fluid” interface.
What makes physical sense in the end is whether a real curved
boundary between two fluid phases complies with { = 0 or
7=0.

However, there is one special case where ¢ = 0 and this
is when the three-dimensional pressure tensor, P, is trans-
versely isotropic throughout the interfacial region, i.e., when

P = P;Us+ Paon [38]

holds, where Uy is the surface idemfactor, cf., Ref. (7). It
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can then be shown, using the equations of Ref, (7), that

A2

n=-D (Py— P)AdA [39]

b

where X is the perpendicular distance from the point in space
to the dividing surface, i.c., A = 0 on the dividing surface.
This equation shows in a more detailed manner than Eq.
[16] that  is generally different from zero even when { = 0,
except for certain special cases, e.g., for planar and spherical
geometries,

Furthermore, we may note that current (mean field) the-
ories of hydrocarbon chains packed in interfaces and hiquid
crystals do, in fact, assume the pressure tensor, P, to be
transversely isotropic (19, 20).

APPENDIX
Here we derive the relation
@B+ ¢0),,, = IVEC, + 2HVEC, — b:VsV5Cy. [A.1]
In the following we shall denote the left and right sides of
this equation by ¢, and (J;, respectively.
Using the relation [ 12] and the identity
Dg* = b* — Ha" [A.2]

which may also be written Dq = b — HUjs, where Us is the
identity tensor (idemfactor) on the surface, one obtains

0, =4(a"B + ¢"'0),, = 12" B, + Ha"(()),.

= b*(Ca)p — 2C) W Dg*), — Co(Dg*) . [A3]

Using the above expression for Dg* and Codazzi’s equa-
tion, H**° = b*7* one derives

(Dg"), = H*; (Dg") . = a”H ,,. [A4]
Combining Eqgs. [A.3] and [A.4], we obtain
Ql - %a#yB,uv + Ila‘w( CZ),;W - b“u(CZ),;.w
= 2(Cy) H* — CoaH . [AS]
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On the other hand, using Eq. [11] it follows that
%V%’CI = %a‘“’(cl ),uv = %a“vB,_uu — Ha’w(CZ),pv
- 2(Cy) H* ~ CaVH,,. [A.6]

In addition, one has the following retations

2HVEC, = 2Ha*(Cy); b VsVsCo = 0¥(Ch),.. [AT]

A combination of the last two equations finally yields

Q, = 1ViC, + 2HVEC, — b: VVsCr = Q) [A8]

which was to be demonstrated.
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