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Adsorption from Surfactant Solutions under Diffusion Control
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A method for solving the nonlinear boundary problem de-
scribing diffusion-controlled adsorption from surfactant solu-
tions is proposed. The problem is reduced to the solution of a
simple set of three equations. These are one ordinary differential
equation of first order and two algebraic equations, one of them
being the adsorption isotherm. This approach is applicable for
both ionic and nonionic surfactants below the critical micelli-
zation concentration. The developed theoretical method is ver-
ified by interpreting data for dynamic surface tension of sodium
dodecylsulfate solutions measured by means of the maximum
bubble pressure method. © 1993 Academic Press, Inc.

1. INTRODUCTION

In the case of diffusion-controlled adsorption from sur-
factant solutions at every moment the subsurface surfactant
concentration ¢y(t) is related to the surfactant adsorption
T'(¢) by means of the equilibrium adsorption isotherm. For
example, many nonionic surfactants are found ( 1-4) to sat-
isfy the Szyszkowsky equation and the Langmuir adsorption
isotherm

@) T ”
b r, — T’
where p and T, are constants. The ionic surfactants can also
satisfy the Szyszkowsky equation (5) or some more com-
plicated adsorption isotherm—see, e.g., Ref. (6). In general,
the nonlinear relation between ¢ (¢) and I'{(/) leads to a non-
linear boundary problem for the diffusion equation. In some
particular cases {small adsorption, small deviations from
equilibrium etc.) the adsorption isotherm can be linearized
and then standard mathematical methods can be applied to
solve the diffusion problem—see, e.g., Refs. (2, 7-9). How-
ever, the general boundary problem is essentially nonlinear.
One way to solve the nonlinear problem is to use perturbation
series methods (10). Another approach is to use the nu-
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merical solution of a set of equations, including the partial
differential equation of diffusion—see Refs. {11-12). Below
we propose an alternative simple approach for solving the
same problem, which is similar to the approach of von Kar-
man io the hydrodynamical boundary layer problem—see
Ref. {(13).

2. BASIC EQUATIONS

The surfactant mass balance at the solution surface reads

al

art

+ al()T(1) = Dg—;

x=0

(2]

Here D is the surfactant diffusivity, c(x, ¢) is the surfactant
concentration, the plane x = 0 corresponds to the solution
surface, and the x-axis is directed inward to the solution.
(1) is the local rate of interfacial dilation. If 64 is an infin-
itesimal parcel of the interface, then

1 d(4)
“ToA d [31

~for the general definition of « see Ref. (14),

Obviously, the right-hand side of Eq. [2] represents the
diffusion flux at the interface, which is connected to the ex-
change of surfactant between the bulk and the adsorption
layer. Since, in general, the interfacial dilation is coupled
with some convective flow in the bulk of the solution, the
bulk surfactant concentration ¢(x, 7} obeys the equation of
the convective diffusion,

—3 (4}

with V, being the x-component of the mean mass velocity.
The boundary conditions are

c(0, 1) = ¢(t}, lim ¢(x,t)= ¢, = const.
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It should be noted that Eq, [4] is applicable when there
are no micelles in the solution. { The equations describing
diffusion in the micellar solution can be found in Ref. {15).)

To specify the problem we restrict our considerations to
the case when the surface dilation is isotropic. As proven by
van Voorst Vader et al. (16), in this case

V= —xa(1). [6]

Let us define

clx, t)
€

()= J:O Ulx, t)dx, Ux,t)y=1- [7]

In general, we suppose that the diffusion is due to some
disturbances of the surfactant adsorption layer. Then /()
defined by Eq. [ 7] characterizes the thickness of the liquid
layer adjacent to the interface, in which the surfactant con-
centration is deviated from the equilibrium one.

Since U/{x, 1), as defined by Eq. [7], also satisfies the
equation of convective diffusion (Eq. [4]), one easily derives
from Eqs. [4]-[7]

d D

dt ¢ 0|,

— a{)(1). [8]

3. MODEL OF THE CONCENTRATION PROFILE

As far as we are interested in the time dependence of the
interfacial properties (adsorption, surface tension, etc.) a
model of the bulk surfactant concentration profile, ¢(x, t),
can ¢nable us to obtain a full set of equations, Equation [8]
shows that the diffusion flux in Eq. [2], which is proportional
to (d¢/dx), -0, in fact depends on an integral, (1), of the
bulk surfactant concentration profile, c{x, t)—cf. Eq. [7].
In other words, for our purpose we need an integral of ¢(x)
rather than the detailed information about the value of ¢ at
every point x. This fact enables one to use a model profile
tor ¢(x) possessing appropriate integral properties, instead
of the exact solution of the diffusion equation. Let us consider
the following model concentration profile (see Fig. 1):

cft)

bit) X

FIG. 1. The model concentration profile ¢, vs x at a given moment 7.
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(X, 1) = colt) + [eo, — co(z)]sin[gﬂ for x < 6

for x = 6.

191

Cm(X, 1) = €
Equation [9] defines the model concentration ¢,,, as a mono-
tonic function of the distance x—cf, Fig. 1; 6 = 8{¢) is an
unknown function. The latter can be determined from the

following integral condition for equivalence between the real
and model concentration profiles:

f [co — c(x, 1)]dx = f [ce — eml(x, Didx. [10]
0 0
By substituting Egs. [7] and [9] into Eq. [10] one derives

le(f)—(l —%)[CmCo(t)]ﬁ(l). [11]

On the other hand, by using Eq. [9] one obtains
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The elimination of §{¢) between Eqs. [11] and [12] vields

7\ 2 @O €=
x_o(z )[ cm]fu)'

From Egs. [8] and [13] one finally obtains

ac

o [13]
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In addition, by eliminating D{d¢/dx) from Eqs. [2] and
[8] one denives

T{t) = co,l(1) + [T(0) — ¢, l(0)]exp[—al(n)], [15]

where

alt) = for (1)dt. [16]

Since the surface rate of dilation &(f) is supposed to be
known, Eqgs. [1],[14], and [15] represent a set of three equa-
tions for determining the three unknown functions I'(z),
co(1), and 1(1). This set can be easily solved numerically.
The initial conditions at the moment ¢ = 0 depend on the
specified dynamic problem. Equation [1] can be replaced
with another adsorption isotherm, if necessary. One can also
calculate the time dependence of the surface tension o, when
an equilibrium relation between o and I' is available.
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4. COMPARISON WITH AN EXACT SOLUTION

The method based on Egs. [1], [14], and [15], although
consuming only a short time, yields an approximate solution
because of the usage of a model concentration profile, Eq.
[9]. The precision of this method can be checked against
the exact analytical solution in the case of the linear adsorp-
tion isotherm. With that end in view let us consider the pro-
cess of relaxation of the adsorption I' with time for small
initial deviation from equilibrium:

[17]
(18]

AP(0) =Ty — I(0) € Ty
a(ty=0 for¢> 0.

Here I'yq is the equilibrium adsorption. By differentiating
the adsorption isotherm, say Eq. [1], one obtains

[19]

ar
AT() = Teg = T{1) = ——|  [ew ~ co(D)]-

C=C,

Then from Eqs. [2], [4], [6], [18], and [19] one derives a
linear boundary condition

) 2
x=(0 dc =t ax

for the diffusion equation
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The initial condition is

Co forx#0

[22]}
(0} for x =0.

cl(x,0) = [

Equations [17]-[22] vield (see, e.g., Ref. (17)):

G(1) = eTerfe(VT), [23]
where
;= AA;((’))) and T=a [24]

are dimenstonless variables and erfc(x) is the complementary
error function.

Now let us derive the dependence of G vs T which follows
from Eqgs. [14]-[15] for the same boundary and initial con-
ditions. From Egs. [7] and [22] it follows that /{0) = 0.
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Then having in mind Eqs. [17]-[20] one can transform
Egs. [14] and [15] to read

2 2
ﬂ—(w—z)a[l(r)—m] [25]
dt Co

AT(t) = AT(0) — ¢, i(8). [26]

Equation [25] can be easily integrated. In view of Egs. [24]
and [26] the result can be presented in the form

(3—1)T—i—1+1nc [27]

2 G
Equation [27], following from the model concentration

profile, Eq. [9], is to be compared with the exact solution,
Eq. [23]. For small T Eq. [23] reduces to

G(Ty=1-2 \/I+0(T)%1
™

—LIVT+0(T), T<1. [28]
On the other hand, from Eq. [27] one obtains
G(TYy=1~ Yz~ 2)T+ O(T)
~ 1= 1.07VT+ O(T), T<1. [29]

For large T Eqgs. [23] and [27] vield G(7T) o« T Y2 and
G(T) o« T7', respectively. Hence, one can expect good
agreement between Eqgs. [23] and [27] for not too large val-
ues of 7. This is confirmed by Fig. 2, where the plots of G
vs T calculated from these two equations are compared. One
can conclude that the approximated method based on Egs.
[14}and [15]is applicable to describing the first stage of the
relaxation process, when G drops from | to ca. 0.3; this
method is not applicable in the cases when the relaxation
for larger T (G < 0.3) represents a special interest.
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FIG. 2. The relaxation curve G vs T calculated from the approximated
Eq. [27] (the solid line) and from the exact Eq. [23] (the dashed line).
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5. COMPARISON WITH EXPERIMENT

The method developed above is not restricted to the case
of smail deviations of the surfactant adsorption from its
equilibrium value, It is applicable when the convective
transport of surfactant toward the interface is important for
the surface mass balance also. Such experimental conditions
are realized in the maxtmum bubble pressure (MBP) method
for measuring the surface tension. Although this method is
widely used, the interpretation of the measured dependence
a{v) is very difficult when surfactant solutions are investi-
gated {18); o is the dynamic surface tension and » is the
frequency of bubble release. In a separate study (19) the role
of the experimental set-up design for the interpretation of
MBP data was investigated in detail. Among the other results,
the dependence of o(») for 4 X 10™* M sodium dodecylsulfate
{SDS) solution in the presence of 0.128 A NaCl at 30.6°C
was measured in Ref. ( 19). The data were analyzed in terms
of the dependence ¢(t,,), where {,, is the time for attaining
a maximum pressure (corresponding to a hemispheric shape
of the bubble surface) calculated as

1
tm = — — l4,
v

[30]

with 13 being the so-called “dead time.” The latter was directly
measured by using an oscilloscope connected to the pressure
transducer. The frequency, », was varied between 0.23 and
15 Hz in these experiments.

To interpret the data one can use Eqs. [14]-[16] derived
above, along with some appropriate expressions for the sur-
face dilation rate of{¢)and for the SDS adsorption isotherm.,

(a) The Surface Dilation

By using a video camera, the shape of a growing bubble
at a given small frequency (v = 0.23 Hz) was directly reg-
istered. From the bubble shape was calculated the depen-
dence of¢) and the experimental points were fitted by the
empirical formula (19)

a’(t) = A][tan Az + T.an(A3[/tm - Az) + A4f/[m],

0<1t< 1y,

(31]

where the adjustable coefficients 4, — 4, was determined by
the least-squares method. Since the direct measurement of
a(!) at higher frequency was impossible it can be assumed
that this formula {with the same coefficients 4, = 0.0395,
A = 1.4539, A5 = 2.7678, A4 = 4.9926) can be applied to
all investigated frequencies, i.¢., to all £,.

(b) Adsorption Isotherm and Equation of State of the
Surfactant Adsorption Layer of SDS

In the case of SDS aqueous solutions Tajima er al. (20,
21) showed that the measured surface tension isotherm, o{c),
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and the surfactant adsorption, T, can be described by means
of the Gibbs’ equation

do

r=———
kTdlne

£32]

and the two-dimensional equation of state of the adsorption
layer,

0.43
(my—a+amva+jzwﬂyA—A@=kﬂ [33]

where ¢ is the surfactant concentration, o is the surface ten-
sion of a pure water surface, k7T is the thermal energy,

A= [34]

1
r
1s the area per molecule in the adsorbed layer, ¢; is the elec-
trolyte concentration in the solution (expressed in mols per
dm?), and A4, = 25 A?isan adjustable parameter representing
the area per molecule in a hypothetical adsorption layer of
tightly packed surfactant molecules. (Another two-dimen-
sional equation of state, similar to Eq. [33], was previously
proposed by Davies—see, e.g., Ref. (6)).

For the computations it is convenient to derive a direct
relationship between T' and ¢, i.e., to obtain the correspond-
ing adsorption isotherm. By integrating Eq. [32] (see also
Eqs. [33], [34]) one obtains

SF 0.43]" -1
= 2.1795 X 1078 == —=—1
a5

Xexp( ), [35]

r,—T
where T, = 1/A4g and ¢ is expressed in mol/cm’. The mul-
tiplicative integration constant in Eq. [35] is determined by
comparison of the theoretical expression with the experi-
mental results of Tajima ef al—see Fig. 5 in Ref. {21).
The experiments of Tajima er al. (21) were carried out at
shightly lower electrolyte concentration, ¢y = 0.115 M,
than that in the experiments from Ref. (19) (cnoct = 0.128
A). We believe this smalj difference is not substantially im-
portant for the interpretation of the experimental results,

(c) Numerical Procedure and Discussion

Eqs. [14], [15], [33], and [ 35] (the latter with ¢ = ¢,(¢)})
represent a full set of equations for the calculation of the
unknown functions /(¢), ¢(#), T(¢), and o(¢). «(t) and
aft) are given by Egs. [16] and [31]. To start the numerical
integration of Eq. [14] one needs initial conditions for ¢(x,
¢}, (), and T'(¢). If one assumes that Eq. [22] describes the
initial condition for ¢(x, ), from Eq. [ 7] one can deduce
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HOYy= 0.

It is now known in advance what the adsorption in the initial
moment, T'(0) is. That is why I'(() was considered as an
adjustable parameter, which was assumed to be the same for
all frequencies. Then Eq. [14] (along with Eqs. [15], [31],
and [35]) was integrated numerically from ¢ = 0 up to ¢
=t and the value of{n ) was calculated and compared with
the experimentally measured surface tension. The diffusion
coefficient D and T(0) were the two adjustable parameters
which were determined by the nonlinear least-squares
method applied to the experimental data for ¢ vs f, (Fig.
3). The procedure yields the following values: D = 4.3
X 107%cm?/sand T(0)/T,, = 0.14. The agreement between
the calculated curve and the measured data is very good (see
Fig. 3)—the standard deviation is 0.68 mN/m. Besides, the
determined value of the diffusion coefficient of a SDS mono-
mer is in good agreement with the experimental value D
= 5.5 %X 107° cm?/s measured in Ref, (22).

6. CONCLUSION

In this study we propose a simple approximate method
for solving the nonlinear boundary problem of diffusion
controlled adsorption from surfactant solutions. By using an
appropnate model function to describe the surfactant con-

749 F

D= 4.3x10"% cm®.s™!
65 [(0)/Te 14 7
60 RMSD = 0.68 mN.m™*

o {mN.m™")

40 . L L 1

FIG. 3. Experimental data from two independent runs for ¢ vs ¢, ob-
tained by means of the MBP method (19) and fitted by using our theory
(see the text).
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centration profile in the bulk of the solution we calculated
the time dependence of the adsorption I'(¢). The dilation of
the surface, as well as the convective transport of surfactant
toward the interface, is taken into account in the proposed
theory. This makes the method applicable to cases when
large deviations of the adsorption from its equilibrium value
take place under dynamic conditions. For instance, our
method based on Eqgs. [14] and [15] can be used to interpret
the data for ¢ vs 1, obtained by means of the maximum
bubble pressure method (Fig. 3).
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