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A procedure for calculating the energy and force of capillary
interaction between two floating spherical particles of submil-
limeter size attached to a liquid—fluid interface is proposed on
the basis of a general expression for the grand thermodynamic
potential of the system. The latter takes into account the grav-
jtational, wetting, and meniscus surface energies. For large in-
terparticle separations the derived equations reduce to the
asymptotic formulas derived by Chan et al. (J. Colloid Interface
Sci. 79, 410 (1981)). The effects of interfacial tension, particle
size, density, and contact angle on the capillary interaction are
investigated. The results of the encrgetical and force approaches
to the capillary interactions turn out (o be in a very good quan-
titative AErecmentl, 4 1993 Avademic Press, bie,

1. INTRODUCTION

The capillary interactions between small particles floating
attached to a liquid-fluid interface were observed long ago
and utilized in some extraction and separation techniques—
see €.2. Refs. (1, 2). When the particles are similar, the cap-
illary forces are attractive and lead to formation of two-di-
mensionat aggregates at the liquid surface. These forces were
siudied experimentally by Hinsch (3) and Camoin ef al. (4).

The main theoretical problem with the capillary forces is
to solve the Laplace equation of capillarity, which in general
is a second-order nonlinear partial differential equation,
which determines the profile of the liquid meniscus around
the particles. A numerical approach was developed by Gifford
and Scriven (5) for the case of two identical infinite parallel
horizental cylinders, when the meniscus has translational
symmetry. Nicolson (6) derived an approximate analytic
expression for the capillary force between two floating bub-
bles. He used a superposition approximation: the meniscus
profile is a superposition of the profiles around two single
bubbiles, cach of them having rotational symmetry, This ap-
proach is applicable when the meniscus slope is small and
the Laplace equation can be linearized. In addition, the in-
terparticle separation should be large compared with the
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particle size in order that the boundary conditions at the
three-phase contact lines (the Neumann-Young equation)
be satisfied. A considerable development of Nicolson’s ap-
proach was achieved by Chan et al. (7), who derived theo-
retical expressions for the energy and force of capillary in-
teraction in the case of floating spheres and horizontal cyl-
inders. These expressions hold for not-too-small interparticle
separations because of the usage of the superposition ap-
proximation. An alternative approach was proposed by
Fortes (8).

A recent development in the theory of capillary meniscus
interactions is based on an asymptotic solution of the Laplace
equation in bipolar coordinates in the cases of two identical
particles (9), two different particles { 10), and particle-wall
interaction (11). More precisely, Refs. (9-11) investigate
the capillary forces between vertical cylinders and/ or spher-
ical particles, which are partially immersed in a liquid layer
on a horizontal substrate; i.e., the vertical movement of the
particles is restricted by the presence of the solid substrate.
One should note that in the latter case the weight of the
particles does not affect the capillary forces.

The aim of the present paper is to apply the approach
developed in Refs. (9, 10) for studying the capillary forces
between spherical particles floating attached to a liquid-fluid
interface, when the meniscus deformations are due to the
particle weight. This approach can lead to an improvement
of the previous study of the same subject, Ref. (7), in the
following two aspects: (i) The usage of bipolar coordinates
in Refs. (9, 10) enables one to impose the exact boundary
conditions (the Neumann-Young equations) at the two
contact lines and to calculate their elevation even for inter-
particle separations comparable with the particle radius,
when the capillary forces are stronger; (ii) In the approach
of Nicolson, used in Ref. (7), it is assumed that the energy
of capillary interaction between floating particles coincides
with the particle gravitational potential energy. The validity
of this assumption will be verified below in comparison with
the general approach proposed in Ref. (9}, which takes into
account not only the gravitational energy of the particles and
of the two neighboring fluid phases, but also the changes in
the wetting and meniscus surface energies due to meniscus
deformation under the particle weight.
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In the next section the geometry of the system under con-
sideration is described. A general expression for the energy
of capillary interaction is derived in Section 3. This expres-
sion 1s specified in Section 4 by using the balance of forces
acting on a particle, In Section 5 the available equations for
calculating the elevations of the contact lines are discussed.
Asymptotic expressions for the capillary forces are derived
and discussed in Section 6. The calculation procedure is de-
scribed in Section 7. Finally, the numerical results are pre-
sented and discussed.

2. CONFIGURATION OF THE INTERFACES

Let us consider the capillary meniscus around two spher-
ical particles of radii R, and R, floating at a liquid-fluid
interface~—see Fig. 1. Each of the particles protrudes from
the lower phase, and three-phase contact lines of radii r, and
ry are formed. «; and «, are the respective contact angles at
which the fluid interface meets the particle surfaces. Far from
the particles, the interface is flat and horizontal. The coor-
dinate plane xy is chosen to coincide with the plane of the
horizontal interface, The plane xz is vertical and passes
through the particle centers.

We dencte by {(x, y) the function describing the shape
of the meniscus surface. The explicit form of {(x, y) can be
determined by solving the Laplace equation of capillarity—
sce Section 5 below. The values of { can be positive in the
case of light particles (Fig. la) and negative in the case of
heavy particles (Fig. 1b). A and ¥, k = 1, 2, shown in Fig.
1 characterize the meniscus elevation and slope at the re-
spective contact line. More precisely, the two contact lines
are not perfectly horizontal (the deviation from horizontality
is very small for gR; < |—see Ref. (7); ¢g™' is the capillary
length—see below). That is why we consider A, as being the
mean elevation of the contact line

B = —— § Ghdl, k=1,2, (2.1]
2wry Jo,
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where C} is a contour representing the projection of the con-
tact line on the horizontal plane xy and z = {.(/) represents
the equation of the contact line. As shown in Figs. la and
1b, A, and ¥ are positive for light particles and negative for
heavy particles.

The parameter by {(k = 1, 2) shown in Figs. l1a and 1b
characterizes the depth of immersion of the respective particle
inside the lower fluid {phase I). Thus for the z-coordinate
of the sphere center one obtains

ZE = — b+ Ry, k=1,2. [2.2]

The volume of the part of the sphere which is immersed

into the lower phase is

VP = bR — be/3), k=1,2, [2.3]
supposing that the contact line is horizontal. The radius of
the contact line is also a function of by:

re = (b(2R — BV, k=12 [2.4]
The above expressions will be used below to calculate the
capillary interaction energy.

3. CAPILLARY INTERACTION ENERGY

Our aim here is to determine the capillary interaction en-
ergy of two particles floating attached to the interface between
phases I and I of mass densitics py and py, respectively. The
surface tension of this phase boundary will be denoted by
~. The quantity ¢! = {v/(p1 — pn)g]'/?, with g being the
gravity acceleration, is the capillary length, characterizing
the range of the capillary interactions—see below. We will
follow the general approach developed in Ref. {9). According
to Eq. [2.2] in Ref. (9) the free energy of the system can be
represented as a superposition of gravitational, wetting, and
liquid meniscus contributions:

FIG. 1.
«; and o, are the three-phase contact angles and r, and r, are the radii of the contact lines.

Sketch of the capillary meniscus around two spherical particles of radii R, and R; at a distance L in the case of (a) light and (b) heavy particles.
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W=W,+ W, + Wy [3.1]
The term

mgZ + T mygZ§
1 Y=L

g

W, = [3.2]

k

accounts for the gravitational energy of the particles and
phases I and lI respectlvely, whose masses are denoted by
my and my; VAN k dand Z y) represent the z-coordinates of the
respective particle or phase mass centers:

Vze = fde and V,z{ = f zdV;
Vi Vy

(k=1,2Y=1L1). [3.3]

To ensure the convergence of the integral over Vy we suppose
that the system under consideration, depicted in Fig. 1, is
closed in a container of a very large (compared with the
capillary length) but still finite size. The exact choice of this
container is not important for the final results, because the
capillary interaction energy is an excess quantity—see Eq.
[3.6] below.
The surface free energy of the particles is

2
=2 2 Ay, [3.4]
k=1 ¥=L1I

with Ay being the area of the interface between the particle
k and the phase Y, and w;y being the respective surface free
energy density. The last term in Eq. [3.1],
=vAA, [3.5]
represents the free surface energy of the liquid meniscus (the
interface between phases I and II); A A is defined as the dif-
ference between the areas of the meniscus surface and its
orthogonal projection on the plane xy—see Fig. 1.

Since the free energy, W, is defined with respect to an
arbitrary additive constant, it is convenient to choose the
reference zero state to be the free energy of the same particles,
taken at infinite (very large compared with the capillary
length) interparticle separation, W,_,. Then the interaction
energy, AW, between particles 1 and 2 can be defined by

AW =W—-W_. [3.6]
As shown in Ref. (10}, the contribution of the meniscus

surface energy, AW, to the interaction energy, AW, is given
by the expression

PAUNOV ET AL.

2
AWy = Wy — Wag = 1y S (leresin i — r3)
k=1

- Apgf || dV = Wha, [3.7]
Vm

where Ap = py — py and W, is the limiting value of W,
for infinite interparticle separation. Here V7, is the volume
comprised between the meniscus surface and its projection
on the xy coordinate plane—see Fig. 1,

By means of some geometrical considerations one can
represent Eq. [3.4] in the form

2

Wo =2 2 [waRebr + ot Re(2R, — bi)].  [3.8)
k=1
By using the Young equation
Wi Wl = Y COSag, k=1,2,
and Eq. [3.8], one can derive
2
AW, = _211"7 Z RkbkCOS X — Www, [39]

k=1

where W, 1s the limiting value of the first term in the right-
hand side of Eq. [3.9] for L. =& oo (cf. Fig. 1Y and AW, is
the contribution of wetting into the capillary interaction en-
ergy.

Let ¥ (¥ be the volume of the upper part of the kth particle
with respect to the level of the contact line of radius r; (cf.
Fig. 1}. In view of Eqs. [3.2] and [3.3] one can represent
the gravitational potential energy of phases I and II in the
form

mlgzgc) = p,g[f de+f |z| dV
V(z<0) v,

m

+2W&M$Lﬂ&7Wﬂlum
k=1

mygZy = pllg[f zdV — |z| dV

V{z>0) ¥m

2z
—Z<W$B$H+VWZW4.[1U]

Here ch, is the volume of a cylmdgr of hexght k. based on
the contact line of the radius, r,; Z{, Z{¥, and Z¥ are the
z-coordinates of the mass centers of V5, Vi, and V(¥

Note that Eqgs. {3.10] and [3.11} hold for the geometrical
configurations depicted in both Figs. laand 1b, On the other
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hand, the gravitational potential energy of the two floating
particles can be expressed in the form

2 2
S mgz = 3 gV 2P + vz, [3.12)
k=1 k=1
supposing that particle k has a uniform density p;.
On the other hand, chl = /2. Then
¥y
Vel Zall =5 riht. (3.13]

In addition, since Z {
center, one can derive

is the z-coordinate of the sphere

V(,UZ(R) V{k)[z(k) (C)] + V(k)Z(C)
= - % ri+ vy Pze [3.14]
and
vibz® =v®z? -viPz{
B L R R A LR LY
where
(k) — 4 3
Vi =2 TR} [3.16]

is the volume of the respective sphere. By substituting from
Eqs. {3.10]-[3.15] into Eq. [3.2] one obtains

2
W, = Apg{ [ rzar+ 3 [

m k=1
w
—ViNZE L v Eiz® g 4r;t“ [3.17]

within the accuracy of an additive constant, which does not
depend on the interparticle distance L; here

Dy ={pi — pu}/dp, Ap=p1-— pu. [3.18]
From Eqgs. [3.13] and [3.17] one derives an expression for
the gravity contribution to the interaction energy:

AW, = Ang
F,

|z| dV + z [(DkV”‘) vinze
k=1

+ ri(r%+2hf§)”-ng, [3.19]

NI
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where W, is the limiting value of
for L = .

Finally, the combination of Egs. [3.6], [3.7], [3.9], and
[3.19] yields an expression for the capillary interaction en-
ergy:

W,,asgiven by Eq.[3.17],

2
AW = Apg 3 [(DkVﬂ‘) rihz 4 % T+ 2h£)]
k=1

2

+ Ty z (hkrksm ‘I/J: - }'k
Je=1

2R.b cos o)

- W, [3.20]

where W, = Wy + Wig, + W is constant with respect.
to the interparticle separation L and A% k R V,r ), and r, can
be calculated from Eqgs. [2.2]~[2.4].

4. THE VERTICAL FORCE BALANCE

Let us consider the forces exerted on a spherical particle,
floating attached to an interface at equitibrium. The vertical
force due to the meniscus surface tension v is counterbal-
anced by the gravity force (see, e.g., Eqs. [26] and [32] in
Ref. 12):;

2ryrysin = FR,

k=1,2, [4.1]

where the gravity force

k
F® = gl(p1— p)V°

+ (pu — Pk)erk) - Ap‘ffrizchk] f4.2]
is in fact the difference between the upthrust and the particle
weight.
Since V1" + V% = V¥ by using Eq. [3.18] one can
transform Eq. [4.2] to read
FR = yg?(vi® -

DV — wrih), [4.3]

where

q° = Apg/y. [4.4]

Equation [4.1] shows that the sign of . is determined by
the sign of F{¥: when the upthrust predominates ;. is pos-
itive; when the particle weight predominates . is negative.
When the particle is too heavy, the balance, Eq. [4.1], can
be violated and the particle will detach from the interface.
Indeed, the left-hand side of Eq. [4.1] is limited. One can
prove that the quantity

Or = risin Yy [4.5]
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has bounded variation: from the condition for extremum,

do.  d

0= v "

[RkSIH(Olk + gbk)Slll lpk]
{ Ry = const, a;, = const), one can derive (see, e.g., Ref. 13)

£ Q< Ri.cos? ==

2 [4.6]

~Rosin? % <

ksm >

By using Eqs. [2.2], [2.3], [3.16], [4.1], [4.3], and [4.4],
one can represent Eq. [3.20} in the form

AW = AW, + AW, + AW, [4.7]

where

2

AW =Ty E (hkrksln ‘l’k""k)_ mao [4.8)
k=1
. 2
AWy = —my 3 {2hrisin g — ¢*lard(ri — 2h3)
k=1
+ (§DkR} — Rieb} + 303N Re — b)) — Wiy, 14.9]

—cf. Eqs. [3.7] and [3.19] (the integrals over the meniscus
volume, Vy,, are omitted in Eqs. [4.8], [4.9] due to their
cancellation in the total interaction  energy—Eqs. [3.20] and
[4.77). The constants Wmm and ng are chosen in such a
way that for L = oo both AW, and AW tend to zero. Equa-
tions [3.9], [4.8], and [4.9] will be used below to calculate
the contributions of wetting, meniscus surface tension, and
gravity into the energy of capillary interaction between the
two particles. However, before that we need some expressions
for the contact line elevation A;.

5. ELEVATION OF THE CONTACT LINES

It is not possible to calculate numerical values of the cap-
illary interaction energy AW without solving the Laplace
equation for the meniscus profile and finding the elevations
fy and h,. In this paper we restrict our considerations to
small particles; i.e.,

(qRe)* <1, k=1,2. [5.1]
For example, in the case of a water-air interface, g~! = 2.7
mm and Eq. [5.1] implies R; < 850 ym. It was proven by
Chan et al. (7) that when Eq. [ 5.1] is satisfied, the meniscus
slope is small; ie.,

at a¢
(—5;) <1, (ay) <1 [5.2]

PAUNOV ET AL.

In this case the Laplace equation can be linearized and an-
alytical expressions for A, can be obtained. Here we make
use of the asympitotic expressions derived in Ref. { 10) for
(gL)? < 1:

e = Qu{ri+ 2In[1 — exp(—274)]}
—(Q1 + O2)In(yeqa) + (G — ()

2 2 exp{—nTt,)sinh nr;
X|A—(~1F3 = L
[ D El n  sinh n(r, + 73)

3

o k=1,2,j¥k, [53]
where Q, and (, are given by Eq. [4.5] above, v, =
1.781072418 - - - (In v, is the constant of Euler—Masceroni—
see e.g. Ref. 15), and

1 sinh #(r, — 72)

4= Z] n sinh n(r, + 72) [54]
Tre=In(afr, + Va?/ri + 1}, k=1,2, [5.5]
=[L? = (r + r)?IL? = (rn — )’ V/(2LY..  [5.6]

For two identical particles (R,
reduces to

= RZs o = Cliz), EQ- [5'3]

1 — exp(—27;)
A = +20hh —MmMM==, k=
k= Ot + 20 ~a

1,2. [5.7]

The elevation of the contact line at infinite interparticle sep-
aration ( single particle) can be determined by means of Der-
jaguin’s ( 14) formula:

4
YeQ@rio(1 4 OS Yior)
k=1,2;(grn)* <1,

Froo = TieoSinYpoln
[5.8]

Here and subsequently the subscript “oo™ denotes the value
of the respective parameter for L — oo . In our case Eq. [5.2]
holds; i.e., the meniscus slope is small and one can set
€08 Yo = 1 in Eq. [5.8].

For r; < L and using Eqs. {5.3] and [5.8] one can write
(Ref. (10), Eq. [B.11])

hk = hkcx) + QJKO(QL); js k = ls 25.} #: k; Fi < L’ [5'9]

where Kj is the modified Bessel function of zero-th order. In
view of the asymptotic formula (15, 16)

2
Ko(x) =1ln — + O(x%n x),
YeX

x—=0, [5.10]
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Eq. [5.9] yields

= 1 .
A = hio + @jln vogL’

S k=12 j#krn<L<g" [511]
One can also calculate the shape of the liquid meniscus
around the two floating particles by using Eqs. [2.35]-[2.39]

in Ref. (10), or Eqgs. [3.49]-[3.52] in Ref. (9).

6. ASYMPTOTIC EXPRESSIONS FOR THE
CAPILLARY FORCES

Having in mind Eqgs. [5.1] and [5.2], one can derive from
Egs. [4.1], {4.2}, and [5.8]

VO] /R ~ (gRu)? < 1, [6.1}

|Ae/ Rl ~ (qR)?|In gRy| <1, k=1,2. [6.2]
Then after some mathematics (see the Appendix) one can

prove that

db}; — d\[/k ko

E__rkd_L [1+0(q2Ra)]

=3 (fm)2 T [1 + O(g°RD)]. [6.3]

From Eqs. [2.4], [3.9], [4.8], and [4.9] one derives

dAW, 2 R dhy
ar ™Y E‘ (gre)” Ricos ak_'df
X [1 + O(g*RD] [6.4]
dAW _ 2 2 dhy
L ™ El [Q« + (gri)* Ricos ay] 7L
X [1+ O(g*RV] [6.5]
dAW
T E 2Qk [l + O(g*R})].  [6.6]

Combining Eqs. [6.4]-[6.6] in accordance with Eq. [4.7]
yields an asymptotic expression for the lateral capillary force

_d(aw)

dL = -y ZQk

[1 + O(¢°RP)].  [6.7]

It is interesting to note that the contribution of the wetting
energy, d{ AW, )/ dL, in spite of being comparable with the
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gravity and meniscus surface contributions, is canceled by
a part of d(AW,,)/dL—cf. Egs. [6.4] and [6.5). Besides,
the rest of the meniscus contribution, d(AWm) /dL, is can-
celed by the half of the gravity contribution, d(AW,)/dL—
see Eqgs. [6.5], [6.6]. Thus the capillary force, F, turns out
to be approximately equal to the half of the gravity contri-
bution d( AW, )/dL, just as intuitively assumed by Nicolson
(6) long ago.

Substituting Eq. [5.9] into Eq. [6.7], one obtains

F=2myQi0:gK (gL)[1 + O(¢°R%)], re<L, [6.8]
where K] is the modified Bessel function of the first order.
In addition, from [6.7]-[6.8] one derives an asymptotic
expression for the energy of capillary interaction:

AW =

—2xyQi1Q:Ko(gL)[1 + O(¢°RD)}, re< L. [69)

In view of the above discussion it is not surprising that the
asymptotic expressions, Egs. [6.8] and [6.9], are equivalent
to Egs. [33] and [34] of Ref. {7), derived by using the ap-
proach due to Nicolson.

For L > ¢! the functions Ky(gL) and K, (gL) decay ex-
ponentially—see e.g. Ref. {16). That is why one can say that
the capillary length g ' determines the range of the lateral
capillary interactions. For (gL)? < 1 (that is L < 850 um
for the water—gas interface ), when the capillary interactions
become important, Egs. [6.8] and [6.9] reduce to

92 -
L

F=2qv , H<ElL<«qg [6.10]

AW = 2avO\Quln{y.gl/2), re< L <g7l. [6.11]
Here we have used Eq. [5.10] and the analogous expression

for K,{x) (15, 16):

Kl(x)=§+0(xlnx), x—=0. [6.12]

The form of Eq. [6.10] resembles Newton’s law of gravity
or Coulomb’s law of electricity, irrespective of the different
power of the distance, L. The counterparts of the particle
masses or charges, @, and Q,, are in fact proportional to the
gravity force—cf. Eqs. [4.1] and [4.5]. In view of Eq. [6.3]
for small particles ) and (), depend weakly on L. Therefore
one can use in Eqs. [6.7]-[6.11] the limiting valucs of (3,
and Q; calculated by Chan et al. (7):

O =~ Ok = £q°RI2 — 4Dy + 3 cos oy, — cos’ay)

X[1+ O(gRy)] [6.13]

(Eq.[6.13]is a corollary of Eq. [27] in Ref. 7). When using
Eq. [6.13] to calculate (J; one should keep in mind that only
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those values of (% which satisfy Eq. [4.6] correspond to
equilibrium attachment of the particle to the interface.
Hence, the effective “capillary charge™ ), is a quantity of
bounded variation, which can be both positive and negative.
Correspondingly, the capillary force F in Eq. [6.10] is at-
tractive when Q,(2; > 0 and repulsive when 3,Q> < 0. In
addition, Eq. [6.13] shows that in zero-th order approxi-
mation ; is determined by the capillary length ¢!, density
ratio Dy, and particle radius and contact angle, R, and «.
The strong dependence of O, on R, leads to a fast decay of
the capillary force with the decrease of the particle radii: for
two identical particles Eqs. [6.8] and [6.9] vield

Fo R°Ky(gL) (Ri=R;=R,r. <L)
AW oc —R®Ko(gl) (R =R, =R,r.<L).

[6.14]
[6.15]

Equations [6.11] and [6.13] allow us to estimate the crit
ical particle size at which the capillary interaction energy
becomes comparable with the energy of the thermal fluc-
tuations, AW/kT ~ 1. Since cos ax ~ | and D, ~ 1, one
can write

AW ~ vg*RIR3In(gL), gL < 1. [6.16]
For similar particles (R, = R, = R), AW/kT ~ 1 for particle
size

o/ kTq?

R~V ———,
¢ v In{qL)

AWKT ~ 1. [6.17]

For typical values of the parameters g ~ 10 cm™, v ~ 50
mN/m, and L ~ R, one gbtains
gR ~ 1072 AW/KT ~ 1. [6.18]

This means that the capillary interaction between particles
floating attached to an interface becomes negligible for par-
ticle size smaller than ca. 10 pm. This estimate is confirmed
by the numerical results presented in Section 8. However,
as discussed in Ref. (9), this is not the case for particles
protruding from a liquid layer on a solid substrate, when the
capillary interactions can be significant even for R ~ 10 nm
(see Fig. 12 and the discussion in Section 8 below).

Before presenting the numerical results in more detail, we
describe briefly the procedure of calculations.

7. PROCEDURE OF CALCULATIONS

Qur aim is to calculate the energy of capillary interaction,
AW, and the capillary force, F = d(AW)/dL, from the gen-
eral expressions Egs. [4.7]-[4.9]. We suppose that the ma-
terial parameters v, g, Dy, and ay and the geometrical pa-
rameters R, and L are known (k =1, 2).

PAUNOV ET AL.

Using some geometrical considerations, one obtains the
expression (cf. Fig. 1):

Y = arccos(g—i ~ 1) — oy, k=1,2. [7.1]

Besides, from Eqs. [2.3],13.16], [4.1],[4.3],and [4.5] one
derives

Ok = 32 [PH( Ry — bi/3) — 3Dy RE~ rihy). [7.2]

Then Eqgs. [2.4], [4.5],[5.3],[7.1},and [7.2]for k=1, 2
form a set of 10 equations for the 10 unknown variables ry,
Ox, M, ¥, and b, (k = 1, 2). When the two particles are
identical the above problem reduces to a set of five equations
for five variables; in this case Eq. [5.7] can be used instead
of Eq. [5.3]. If gL = 1, Eq. [5.9] must be used instead of
Eq. [5.3] or [5.7]. To determine W, one needs also the
limiting values rio, Ckwos Akons Vi, and by, for L — oo,
The latter can be determined by means of the same set of
five equations in which Eq. [5.7] is exchanged with Eq. [ 5.8].

In all cases the problem was sclved numerically. Then
AW was calculated from Eqs. [3.9] and [4.7]-[4.9] and F
= d(AW)/dL was determined by numerical differentiation.

For R, < 850 pm one can use a much faster iterative
procedure, which is described below, Since in the present
paper we deal with the case of small meniscus slope, i.e., Eq.
[5.2] holds, one can write

rr = Risin(ay + Yr) == Ry cos aysin ¥y + Resin ap. [7.3]

The substitution of sin ¥, from Eq. [4.5] into Eq. [7.3] leads
to a quadratic equation for r,, whose solution reads

re = Y[ Risin ax + (Risin%ay + 40, Rycos oy )'?].  [7.4]

In addition, from Eq. [6.3] one obtains

Q" = 0 —Han (WY - mM). k=1,2, (75
(n+1) (n} . . .
where (), " and (J; ' are two consecutive approximations
for Oy (the same for ™ and A):n=0,1,2,. ...

. . . 0 ©)
(i) To start the iterations one can use r}, = Frws Qi =

Oreo» and h® = h,., where Q. is determined from Eq.
[6.13], rr, is then calculated from Eq. [7.4] with Gy = Ok,
and finally A, is determined from Eq. [5.8].

(ii) Ay™" is calculated from Eq. [5.3] by substituting O
= QL"} and ry = ri.

(iii) Then Eq. [7.5] provides the next approximation,

D which substituted in Eq. [7.3] yields 7§, After
that step, step (ii) is repeated again to give iy, etc.
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This simple iterative procedure is quickly convergent. With
the values of (J,, ry, and A (kK = 1, 2) thus obtained one
then calculates
i = arcsin{Qx/re),  br = Re[l + cos{ay + ¥i}].  [7.6]
Finally, from Eqgs. [3.9] and [4.7]-[4.9] one determines AW,

For Ry < 100 um one can use also Eq. [6.7] and its coun-
terpart

2
AW = =7y 3 (Quhi — Quwliis)[1 + O(*RY)] [7.7]
k=1

to determine the capillary interaction force and energy. Note
that Egs. [6.7] and [7.7], coupled with Eq. [5.3], are more
general than Egs. [6.8]-[6.9], the latter being subject to the
additional restriction L » r;.

§. NUMERICAL RESULTS AND DISCUSSION

First of all let us compare the capillary force F = d(AW)/
dL, calculated by numerical differentiation of Eq. [4.7]
(along with Eqs. [3.9], [4.8], and [4.9]), with the capillary
force as given by Eqgs. [6.8] and [6.13], which are due to
Chan et al. (7). For that purpose, let us consider the ratio
of these two forces

_ F(Eq.[47]) (5.1]
F(Eq. [6.8])

The plot of ® vs L/{2R) is shown in Fig, 2 for a specified

choice of the parameters: R; = Ry = 10 um, py = p2 = 3 g/

cm’, py=1g/em?, p =0, ¥ = 70 mN/m, and the contact

angle o) = a» = « is varied. For large distance I. between

4.0 — T 40

) _ F(Eq.[4.7]) £y = 3.0 g.em™

F(Eq.[ 6.8 =
50 (Eq.[6.8]) R=10pm 1.,
L pr=1.0g.cm™ |
o= 0
12.0
YT 1.0
0.0 . ' re 0.0
1.0 2.0 3.0 4.0
L/(2R)

FIG. 2. Plot of the ratio ¢ of the capillary force, calculated by differ-
entiation of Eq. [4.7] and the force calculated by means of the asymptotic
formula, Eq. [6.8). The dotted, dashed, and solid lines correspond to three-
phase contact angles 30°, 60°, ad 90°, respectively.
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TABLE 1
Comparison between the Capillary Force F* and the Deriv-
ative d(AW)/dL for Two Floating Microparticles Attached to
an Air/Water Interface with v = 70 mN/m

L (pm) AW (3) FEN) d(AW)/dL
20.0 —~3.30 X 107 3.83 X 107" 3.21 x 10716
40.0 —2.81 X 107X 1.69 x 107 1.61 x 107
60.0 ~2.54 X 1072 1.10 X 107 1.07 x 107'¢
0.0 —235X 1072 8.18 X 107" 8.09 x 10777

100.0 —221 X 107D 6.52x 1077 6.47 X 1077

Note, Ry = 15 pm, o = 10°, p, = 3.0 gfem™; Ry = § pin, ez = 20°, p, =
3.0 g/em’.

the two particies, & tends to 1. This could be expected because
Eq. [6.8] is derived by using the assumption L » R;. On
the other hand, for shorter interparticle distances, say L/
(2R) = 3, & is pronouncedly larger than 1, which means
that Eq. [6.8] considerably underestimates the magnitude
of the capillary forces in this case. Since (gR)? < 1, our Eq.
[6.7], coupled with Eq. [5.3], turns out to give the same
numerical results as the differentiated Eq. [4.7]. Besides, the
deviation of ® from 1 increases when the contact angle « is
approaching 90°.

In Ref. (10) an independent force approach for calculating
the capillary forces was developed {see the comments on Eq.
[8.3] below). It is proven there that the magnitudes of the
horizontal projections of the capillary forces, exerted on the
two particles, must be equal: F{"’ = F*_ In Table |1 we
compare the values of F{*) determined by means of the force
approach (Egs. [6.1], [6.14], [6.20], [6.22], and [6.23] of
Ref. 10) with F = d(AW)/dL due to the energetical ap-
proach; i.e., calculated by means of Eq. [4.7] above. As seen
in Table | the numerical results of the two approaches are
in a good agreement in spite of the approximations, like Eqgs.
[5.1] and [5.2], used in both approaches. It should be also
noted that although o, # o and R| ¥ R; the force approach
of Ref. (10) yields F{"' = F&) as it must be.

Table 1 contains also data for the capillary interaction
energy AW vs L calculated by means of Eq. [4.7]. One can
see that AW is negative (attraction between the two spheres)
and the magnitude of AW is of the order of 3-5 times the
thermal energy AT, Besides, | AW | decays with the increase
of the interparticle distance. This is illustrated graphically
for two identical particles in Fig. 3, where L is plotted in a
logarithmic scale. The straight lines means that for a wide
range of distances the asymptotic formula, Eq, [6.11], holds.
(However, for L = ¢~', AW decays much faster {exponen-
tially) in accordance with Eq. [6.9]; in addition, for L ~
rr, when & # 1 (cf, Fig. 2), Eq. {6.11] also does not hold.)

Figure 3 illustrates also the strong dependence of the energy
of capillary interaction on the density of the two particles.
One seecs that when R, = R, = 10 um there is no capillary
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0.0 \——— =
=1.05 g.cm™ am———
AW/’CT [ Pr B e
20}  Le--C - .
=15 g.cm™
a0} "y =70 mN.m"" |
R=10.0 um
a= 60°
-6.0} pr=1.0g.cm™
oy =2.0g.cm™ =0
.._8'0 i L PSS | N
1 102 103
L {pm]

FIG. 3. Dependence of the capillary interaction energy, AW/kT, on
the interparticle distance, L, for three different values of the particle mass
density, pr.

interaction between two particles of density g, = 1.05 g/cm’
(|AW| < kT, however there is a pronounced interaction
when p, = 2 g/cm’.

Figure 4 provides a closer examination of the density de-
pendence of AW for different values of the contact angle o
= a) = a; of two identical particles. To specify the value of
L we have chosen L = 2R; i.e., the particles (but not the
three-phase contact lines) are in close contact. As could be
expected, AW is negative (attraction); however, for some
value of pr, AW is zero and the respective curve in Fig. 4
exhibits a maximum. The latter corresponds to @, = 0 i.e.,
to nondeformed (flat} liquid surface. The density py; = pf in
this special case can be estimated from Eqs. [3.18] and
[6.13]:

* J—
Pk ZPU_ 12 + 3 cos ag — cos’ay).  [8.2]
P17~ P
0.0~
AW/ET -7 -
b
5
-25} N
\
R=10.0 um \ .
-50F L= 2R \ . 1
pr=10gem™ N Y = 90°
_ \ ' ]
-75F Pn = 0 \ \\
7 =70 mN.m"l \ \
- L]
o = 150°\ *
-10.0 s — : e
0.0 05 1.0 15 2.0
pe [g.em™]

FIG. 4. Plot of AW/KT vs particle mass density, p,, for two similar
particles with radii of 10 um, in contact, for different values of the contact
angle, a.
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0.0

AW/KT |

-5.0}

-10.0¢

— !

-15.0 : L

120
a [deg]

FIG. 5. Plot of AW/kT vs « for different values of p,. The other pa-
rameters are the same as in Fig. 4.

150 180

Figure 5 illustrates the dependence of the capillary inter-
action energy, AW, on the contact angle, oy, for two identical
particles of the same size, like those in Fig. 4. The effect of
ay turns out to be pronounced in the interval 45° < o <
135°: outside this interval AW is almost constant. This be-
havior is due to the fact that the “capillary charge,” Qy,
depends on «y via cos ay, cf. Eq. [6.13], and cos ay varies
strongly in the interval 45° < ay < 135°, whereas cos ay is
alsmost constant (1) outside this interval,

Figure 6 illustrates the effect of surface tension v on the
capillary interaction between two floating particles. One can
see that the lower the v, the greater the magnitude AW}
of the capillary interaction energy. From Eqs. [4.4] and
[6.137 one finds that the “capillary charge”™ of a floating par-
ticle is inversely proportional to the surface tension: O oc
1/+. Then from Eq. [6.9] one obtains AW oc vO1(s
1 /y—this explains the behavior of the curves in Fig. 6. In
other words, the lower the surface tension v, the greater the
surface deformation {characterized by () and the greater

0 . _
AW/kT ————— . ]
7 —10[P=1.05gem 3 __ouo--ommTT0T J
—20 7 = 1.20 g.cm-2 o
-30} /,.--"‘ ]
/"' Ri=Re=R=15um
-a0y /'/ L =2R 1
"50' ./‘ al=a2=a=60° 1
7 p =1.0g.cm-3
-60}F 7/ _ ]
/oy = 1.50 g.om=3 =0
=70 ! . . L
20 30 40 50 60 70 80

v [mN.m-1]

FIG. 6. Dependence of AW/kT on the interfacial tension, v, for similar
particles with radii of 153 pm and a three-phase contact angle of 60°. The
curves correspond to different values of the particle mass density, p;.
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the capillary interaction. Such behavior was first reported by
Chan et al. (7).

In contrast with Figs. 3-6, Fig. 7 presents data for the
capillary interaction between two different particles (R, #
R;, o) # az). Ry = 5 um is kept constant and R, is varied.
One can see that, for Ry = 5 um, |AW| < kT and the cap-
illary interaction between the particles is negligible. However,
for Ry = 15 uym, |AW| ~ 10kT and a pronounced inter-
particle attraction takes place.

When 0, < 0, the particles repel each other (AW > Q).
Such is the case of a floating bubble and a floating heavier
particle, illustrated in Fig. 8. The bubble radius is fixed, R
= 20 um, and the solid particle radius is vared. As could be
expected, the larger the particle radius, the greater the cap-
illary repulsion,

Figure 9 illustrates the magnitude and the sign of the dif-
ferent components of the capillary interaction energy, AW,
The wetting component AW, is calculated from Eq. [3.9].
The meniscus and gravity components, AW,, and AW, are
catculated from Egs. [4.8] and [4.9]. The total capillary
interaction ¢nergy, AW, is a superposition of all these com-
ponents, in accordance with Eq. [4.7]. One sees in Fig. 9
that the contributions of all components have comparable
magnitudes but different signs. One can see also that the
total energy, AW, turns out to be approximately equal to
half of the gravitational energy, AWS, as discussed after Eq.
[6.7] above.

Just like in the energetical approach, AW has gravitational,
meniscus, and wetting components; in the force approach,
developed in Ref. (10), the lateral capillary force FI*) exerted
on the kth particle (k = 1, 2) has pressure and surface tension
components:

FU = pUo) 4 plw) o= 2, 3]
0.0
R=5pm ]
AW/ET [ aememmmmmm™ "
R=10 pum
Y )
"“‘" o =3.0g.cm-3
/
4 =70 mN.m -1
-10.0} ra R.=5um (fixed)
Rl = 15 Him oy = 60°, a; = e
m=1.0g.cm-3, py=10
~15.0 , ‘ i
0 50 100 150 200

Llpum]

F1G, 7. Dependence of AW/kT on L for particles that differ in size and
contact angle, The contact angles are o, = 60°, oy = 70°, The radius R, =
5 um is kept constant, whereas R, is varied. The two particles are of equal
mass density, p = 3.0 g/cm’.
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5000 Pr—
7 =35 mN.m~
R, =40
AW/kT 1 =A0em Re=20.0 um (fixed)
4000 \.\ p1=2.0g.cm—3
N p=0
3000 | ‘« = B0°, o= 150
~, p=1.0gem=3, py=0
\.
2000 | R,= 30 um “‘»-..,\
\\\ .“->.‘~'l—-
1000 } Tteeil .. T -
R=20pm  TTUeeeell
0 L . :
0 250 500 750 1000
L[pum]

FIG. 8. Dependence of AW/AT on L in the case of heavy particle-
bubble capillary repulsion. The equatorial radius of the bubble R, = 20 um
is fixed and the particle radius, R, is varied.

F{¥} is related to the integral of the hydrostatic pressure
over the surface of the particle and F{* is related to the
integral of the surface tension -y along the contact line—see
Egs. [6.2] and [6.3] in Ref. (10). Our aim now is to compare
the magnitudes of F¥* and F{*® in the case of two floating
spherical particles. The parameters ry, ¥, and A; can be de-
termined as explained in the previous section. Then one can
calculate F¥® and FU from Eqs. [6.14] and [6.20] in
Ref. (10). The ratio F¥® /F%") is plotted in Fig. 10 vs the
distance L between two identical spherical particles of radius
R. One sees that F$ < FUY 506 the contribution of the
pressure to the lateral capillary force turns out to be negligible
for submillimeter particles. Similar is the situation of the
case of two spheres protruding from a liquid layer on a solid
substrate investigated in Ref, (10).

Finally let us consider the dependence of the capillary
interactions on the particle radius. As an illustration, Fig.
11 presents the plot of the energy AW vs particle radius. The
two particles are supposed to be identical: R, = R, = R, «

200 _
AW/KT | e L.
00
—z0.0} //__,i ----- - -
R =70 mN.m-1
- — AF 7
—40.0[ ’ " a,=oy=600
to- AR, R, =R, =R={0pm
-80.0F e AN, P =py=3.0g.cm-3
- W, p=1g.cm-8, ppy=0
-80.0 —— : A * + —
0 10 20 30 40
L/2R

FIG. 9. Plot of the different contributions {gravitational, wetting, and
meniscus) to the inleraction energy, AW (see Eqs. [3.9] and [4.7]-[4.9]).
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;,('x;)x 10* ¥ =70 mN.m-!?
x 7.5 Pe = 3.0 g,cm—a
pa=1.0g.cm-3
5.0} Pn=
-BZ20pm
el T
R=10pum
0.0 : . s J
0 250 500 750 1000

Llpm]

FIG. 10, Plot of F¥ F¥") vs L for two identical particles of mass
density p, = 3.0 g/cm? and contact angle & = 60°, The solid and dashed
curves correspond te radii R = 10 pm and R = 20 um, respectively.

= a; = @ = 60°. It is seen that AW decays quickly with the
decrease of R. For R < 10 um the lateral capillary interaction
between two floating particles becomes negligible. Such be-
havior could be expected in view of Eqs. [6.17] and [6.18]
above,

In general, the capillary attraction between two similar
floating particles appears because the liquid meniscus de-
forms in such a way that the gravitational potential energy
of the two particles decreases when they approach each other.
Thus it is not surprising that in the case of small particles
(gRy < 1072), when the particle gravitational energy is small,
both the meniscus deformation and the capillary interaction
are negligible.

However, the situation is quite different when the particles
(instead of being floating) are restricted in their vertical
movement by the presence of a solid substrate (9, 10). We
call such a configuration “particles partially immersed in a
liquid layer on a substrate” and the respective forces “im-
mersion capillary forces”. As shown in Refs. (9, 10) in the

200 A= 2,00 g.cm-2
- AW/’CT F ‘ m=0
150 | !
=70 mN.m~1 !
?‘; =80 ° i o= 1.05 g.c’m-3
. ’
100y L= 2R ; s
p=10g.cm-3 i J
sof Pu= 0 A
rd
’/
0 . 3 .-.—"-'; i i
0 5 10 15 20 25 30
R [pm]
FIG. 11. Dependence of AW/kT on the particle radius, R, for two

similar particles for three different values of the particle mass density, p,.
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latter case the energy of capillary attraction turns out to be
much larger than £T even with submicrometer particles. This
effect 1s related to the three-phase contact angle; i.e., to the
intermolecular forces, rather than to gravity.

Figure 12 illustrates the difference between these two cases;
(1) of floating particles (the dashed line) and (ii) of particles
partially immersed in a liquid layer on a solid substrate (the
solid line). The plot represents the dependence of AW/
kT on the particle radius, R, for two identical particles, R,
=Ry =R, a; = a; =« =60° p) = py = p,,. It is supposed
that in case (ii) the thickness of the liquid layer, [, is equal
to the particle radius, R. In both cases the particles are con-
sidered to be in contact; i.e., L. = 2R. It is seen that the
presence of a solid substrate increases the magnitude of cap-
illary interaction by several orders of magnitude. There is
experimental evidence (17-19) that such “immersion” cap-
illary forces can bring about the formation of a two-dimen-
sional array (2D-colloid crystal) from both micrometer-sized
and submicrometer particles: e.g., latex spherical particles,
protein globules, etc.

9. CONCLUDING REMARKS

The main results in this paper ¢an be summarized as fol-
lows:

(i) A general approach based on an expression for the
grand thermodynamic potential, Eqgs. [3.1]-[3.6], isapplied
to calculate the energy, AW, and force, F, of capillary in-
teraction between two spherical particles floating at a fluid
interface. AW is a superposition of gravity, wetting, and me-
niscus contributions—see Eqs. [3.9] and [4.7]-[4.9]. For

- AW/kT
+ =40 mN.m-1
109 }‘ a=60°
108 I = 2R

107
106
105
104
103
102
101
100
10-1 . — . t

10-8

FIG. 12. Plot of AW/KkT vs particle radius, R, for two different cases:
(i) two particles, floating attached to an air/water interface (the dashed
line), and (ii) two particles parttally immersed in a liquid layer on a horizontal
substrate (the solid ling). The last curve (ii) is calculated by means of Eq.
[4.11] in Ref. (9).
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not-too-small interparticle separations AW turns out to be
approximately equal to half of the gravitational energy (see
Fig. 9), as anticipated previously by Nicholson (6).

{ii) The derived equations allow calculation of AW and
F not only for large but also for small interparticie separa-
tions, in this aspect giving an improvement over the earlier
theory by Chan et al. (7)—cf. Fig. 2. The results from the
energetical approach developed in the present paper and the
force approach from Ref. (10) turn out to be in a very good
quantitative agreement—see Table 1.

(iii) In some range of interparticle distances the capillary
force F obeys a power law, which resembles Newton’s law
of gravity or Coulomb’s law of electricity—see Eq. [6.10]
above. In this aspect one can introduce the concept of “cap-
illary charge,” ), and ., of the two interacting particles.
In particular, depending on whether G, > 0 or 1 (Q: <0,
the capillary interaction is attractive or repulsive. The range
of variation of @, (k = 1, 2) is determined by Eq. [4.6].

(iv) The capillary interaction energy, AW, is a monotonic
function of the particle contact angle, o (Fig. 5). However,
VAW | exhibits a minimum as a function of the particle den-
sity, o (Fig. 4).

(v} The decrease of the interfacial tension, vy, facilitates
the meniscus deformation, thus increasing the magnitude of
capillary interaction (Fig. 6).

(vi) In the case of submillimeter particles, considered here,
the contribution of the surface tension to the capillary force
is much greater than the contribution of the hydrostatic
pressure {Fig. 10).

(vii) The capillary interaction between floating particles
decreases quickly, with the sixth power of the particle radius,
R, when decreasing the particle size—see Eqs. [6.14]-[6.15]
and Fig. 11, This is a consequence of the fact that the inter-
action is brought about by the weight of the particles.

Finally, it should be noted that our results in this paper
are subject to the following restrictions:

* The expressions for AW and F hold for submillimeter
particles (g R} < 1) and for small meniscus siope—cf. Egs.
[5.1] and [5.2]. As shown in Ref. (7) these two conditions
are coupled: small particles imply small meniscus slope.

¢ The assumption that the meniscus surface must be flat
and horizontal far from the floating particles is essentially
used. Hence the distance between the particles and the wall
of the vessel that holds the fluid must be larger than the
capillary length ¢~'—cf. Eq. [4.4]. Otherwise the interaction
of the particles with the meniscus near the wall will become
important—see e.g., Ref. (11).

e The procedure used in this paper to calculate AP and
F cannot be applied to the case of particles which are not
floating, but are partially immersed in a liquid layer on a
substrate, In the latter case the meniscus defoermations are
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due to the capillary rise of the liquid at the particle surfaces,
rather than to the particle weight. In particular, Eqgs. [6.13]
or [7.2] cannot be used to calculate the “capillary charges”
Q, and O,. Instead, one must apply the calculation procedure
developed in Refs. (9-11).

APPENDIX: ON THE DERIVATION OF Eq. [6.3]
Some geometrical considerations (cf. Fig. 1) yield
b = Ri[1 + cos(ex + ¥u)], ri = Resin(ay + ). [A-1]

Since the particle radius, R;, is assumed constant, from Eqs.
[A.1] and [5.2] one obtains

db,

T

dL

d
T [A.2]

On the other hand, by differentiating Eq. [2.4] one derives

dbk Fic drk
—_— = . A3
dl. Ry — b, dL [A-3]

The differentiation of Eq. [4.5] along with Eqs. [A.2] and
[A.3] yields

. drk
+ sin d_L

o _(
dL bk—Rk

aby

= 8% 1p2
=~ 7L [1 + O(g"R?)]. [A.4]

In addition, the differentiation of Eq. {7.2] in conjunction
with Eq. [2.4] leads to

40k
drL

2
_ [0, A
) [ dl. 2I‘khde ¥

L dhy

— . A5
g [A5]
Finally, by substituting from Egs. [A.3] and [A.4] into Eq.
[A.5], one can derive

d0c _ 1 5, dh
= Grde

21p2
dL > [1 + O(g*Ri)].

[A.6]

A combination of Eqgs. [A2], [A4], and [A6] leads to the
sought-for eq. [6.3].
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