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ABSTRACT

Different factors can contribute to the value of the line tension acting
at the periphery of a thin foam film, To study one of them, the motion of the
contact line, a new experimental technique has been developed. It was established
experimentally that slowly shrinking small air bubbles attached to a liquid - air
interface form a nonequilibrium (dynamic) contact angles. Aqueous solution of
sodium dodecyl sulfate (SDS) are used at two different concentrations of added
electrolyte. A black thin liquid film is formed at the top of the bubble. The
experimental cell used allows measurements with shrin ini, expanding and
quiescent ("stopped") bubbles, Hysteresis of the contact angle has been observed.
The results show that the shrinking of the contact line (advancing meniscus)
causes deviation of the contact angle from its equilibrium value. The data allow
independent calculation of the film and line tensions, y and x. For a "stopped"
bubble both y and x relax with time: x tends to =zero and ¥ tends to its
equilibrium value for infinite £ilm known from other experiments. The results
suggest that the concept of dynamic line tension must be introduced. The latter
was attributed to the motion of the contact line,

1. INTRODUCTION

The interest toward the line tension and its effect on the
contact angles has been markedly increased during the last decade.
The study of these effects is stimulated by their possible
importance for the occurrence of a number of phenomena like
wetting, flotation, interactions of fluid particles, biological
cells, étc. Nevertheless, the information about the values of the
line tension, obtained with different systems ig still scanty and
sometimes controversial. As a rule, the theoretical works predict
systematically lower magnitude of the line tension than the
magnitude determined experimentally. For attached emulsion droplets
the theory [1,2] predicts line tension x = 0.1nN, whereas the
experiment [3] yields x = 10 - 20nN. The theoretical values of x
for a solid-ligquid-gas three phase contact line are between -0.026
and -=0.082 nN [4]. On the other hand, for the same type of systems
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positive line tension of the order of 1000 nN has been measured
experimentally ([5,6]. Line tension of about -0.001nN has been
estimated theoretically for the periphery of a thin foam film [7].
The measurements with +thin films formed at the top of small
floating bubbles yielded x of the order of -100nN [8].

We think that these differences should not be considered as

faillure either of the theory ox of the experiment. The theories of

line tension are usually based on some simplified model concepts,-

whereas the real situation studied experimentally can be much more
complicated. Different unexpected effects can contribute to the
line tension.

We believe the difficulties with the line tension can be
overcome by carrying out detailed studies of this effect with some
simple systems. Such systems, investigated in the present study,
are the foam films. In this case effects like surface roughness and
inhomogeneity (typical for solid surfaces) are absent. In addition,
the interactions in the +thin film and the viscous effects
accompanying its drainage are gquite well understood (see e.g. [9]).

In the next section we give a brief outline of the theory of line
tension at the periphery of the thin films. Special attention is
paid to those effects, which can perturb the microscopic transition
zone film-meniscus thus leading macroscopically to the appearance
of an effective line tension. The remaining part of this paper is
devoted to new experiments with small bubbles, in which the role of
the contact line motion on the values of the contact angle and line
tension is studied. We believe that thesge new experimental results

explain the existing gap between theory and experiment.

2 .MACROSCOPIC AND MICROSCOPIC TREATMENTS OF THE CONTACT ZONE FILM - MENISCUS

a) Macroscopic treatment

The force balance equations at the periphery of a thin liquid
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film, as well as the related problem about the definition of the
contact angle, are based on the Gibbs macroscopic theory of
capillarity (10]. The latter was extended by Boruvka and Neumann
[11] to linear and point phases.

For clarity we give a brief outline of the Gibbs approach. A
detailed and rigorous treatment can be found in Refs. [10-14]). The
transition regions Dbetween the phases in real non-~-homogeneous
systems have finite thickness or width and the forces acting in
them (more precisely, the pressure tensor) are continuous functions
of the position. In the Gibbs treatment the phases are considered
as being homogeneous, the transition regions are replaced by gsharp
boundaries (surfaces, lines or points) and the integrals over the
pressure tensor are replaced by forces acting on the surfaces (e.g.
surface tension) the lines and the points. In order to make these
idealized (model) systems eguivalent to the real ones, excesses of
the extensive properties are also introduced. The positions of the
phase boundaries (surfaces, lines and points) in the model systems
are fixed by the conditions for equivalence of the real and model
systems both mechanically and with respect to the extensive
properties. In some cases the positions of a few boundaries can be
chosen arbitrarily. Some of the macroscoplc parameters Sso defined
can depend on the localization of the boundaries (e.g. the surface
tension of a drop depends on the drop radius [10,12,13]), i.e. on
the choice of the idealized system, but once this choice has been
made all parameters have well defined fixed values for a given
physical state of the real system. For the line tension this
problem was investigated by Navascues and Tarazona [15].

Two equivalent approaches have been used in the macroscopic
theory of thin films: we call them the "membrane approach" when the
film is considered as a membrane of zexo thickness and one film
tension y acting along the surface of tension, and the "detailed
approach” when the film is treated as a homogeneous liquid layer of

thickness h and two film surface tensions, dlf and azf (see Refs.
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Fig.l. The membrane and the detailed approaches (on the right- and left-
hand side, respectively).

(13,16]). All phase boundaries are assumed to be the surfaces or
lines of tension (see Refs. [12,16,17}).

Let us consider a flat symmetrical thin liquid film (oyf = o,f
= af) surrounded by a meniscus (with surface tension al) in the
absence of gravity - see Fig.l. Such films may have translational
[18] or cylindrical [19] symmetry. The right-hand side of Fig.l
illustrates the membrane approach. The extrapolated meniscus

1 and

surfaces z(x) (extrapqlated at constant surface tension ¢
capillary pressure [17]), meet at the contact line (at x = r,) and
form an angle 2«a. For translational symmetry the balance of the
forces acting along the axis Ox at the contact liﬁe yvields

y = 20lcosa (1)
The force balance at the contact line along the axis Oz in this
{(membrane) approach is automatically satisfied. When the film has
a2 cylindrical symmetry (then z(x) is the generatfix of the meniscus
surface), Eq.{l) must include a term accounting for the line

tension x of the contact line C [20]:

K
Y+ o - 20lcosa (2)
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Tt was shown in Ref. [17] that the contact line defined by the

extrapolation procedure described above is a line of tension, 8o

that (2) does not contain the term ??ig accounting for the virtual
[+

displacement of the contact line.

There are two contact lines and two film suxfaces in the
detailed approach (see the left~hand side of Fig.l, where C; and Cjp
are the points where the two contact lines pierce the plane of the
drawing). For cylindrical symmetry the contact lines are
circumferences with radii r, ;. In the case of a film of finite
thickness the contact angle a; # a — see Fig.1l and Ref.[21]. The
tangential condition for equilibrium (along Ox) in the detailed
approach for translational symmetry was formulated by de Feijter
and Vrij [7] and derived by a variational procedure by Toshev and
Ivanov [22]:

of = alcosal (3)

For axially symmetric films one can write for each contact line

(see [7]):
£ L3 1
ot + —— = o cosa 4
Tel 1 (4)
where ® = %y = kp is the line tension of the respective contact

line C; or Cj.
In the detailed approach the normal balance
T = olsina (5)
is not trivial. Here T is the transversal tension, introduced in
Refs. [23,24]. Values of 7 for foam films stabilized with sodium
dodecyl sulfate are published in Ref. [25]. In fact, Egs. (4) and
(5) are two projections of the vectorial equation

gf + gl +g*+z=0 ‘ (6)

~

where the vector g¢g* of magnitude |gﬁ|'= is directed toward the

cl

center of curvature of the contact line.
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Since the membrane and the detailed approaches (models) are
mechanically equivalent, there are equations connecting y with of
and ¥ with #:

y = 20f + P,h (7)

x = 2% + 2P,AA - 201Al + 20fAr, (8)

where P, = P, - Py is the capillary pressure, AA is the area of the

g
dashed curvilinear triangle in Fig.1, Al is the length of the arc

c;C', Ar, = r,-r.. Egs. (7) and (8) have been first derived in
Refs.[13] and [23], respectively.

~

K

It is interesting to note, that when the line tension effect 7
C

is not zero, the contact angles are gravity dependent [26].
Besides, the transversal tension 7 turns out to be more important
than the buoyancy force for attachment of small particles to
interfaces [25].

The macroscopic parameters so defined are amenable to
experimental measurement. The connection between the measured
thermodynamic macroscopic parameters (surface tension, disjoining
pressure, film and line tensions, etc.) and the force distribution
in the real non-homogeneous system can be established only via a
microscopic theory, allowing the representation of the
thermodynamic parameters as integrals over the pressure tensor or
some other equivalent forces, defined locally. Such a microscopic

theory is presented in [7,9,24,27]). A brief outline is given below.

b) Microscoplc treatment

Let us consider again a symmetrical planar thin liquid £film,
in the absence of external fields, encircled by a capillary
meniscus of the same liquid (Fig.2). Close to the axis of symmetry
‘0Oz the film has constant thickness h (defined as the distance
between the two surfaces of tension each of them with film surface

tension af). Far from Oz (in the meniscus) the disjoining pressure
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Fig.2. The transition between a thin liquid £ilm and the capillary meniscus
is smooth, The solid lines represent the real interfaces and the
dashed - extrapolated ones.

I = 0, the surface tension of the meniscus is constant, al, and the
generatrix of the surface z(x) satisfies Laplace equation [28). In
the intermediate region the two surfaces interact and since the
interaction energy depends on the distance between them, the
surface tension in this region o(x) changes gradually from of to
ol. The disjoining pressure II is also a function of x in this
region. This (real) system is depicted in Fig.2 with continuous
solid lines. As mentioned above it is customary to introduce an

idealized system by extrapolating the meniscus and film surfaces

(at constant surface tensions and capillary pressure {17)) until

they intersect to form a contact angle aj. The extrapolated
gsurfaces are shown in Fig.2 with dashed lines.

We consider the film as divided by its surface of tension (in
this case the surface z=0) into two parts aﬁd will define the local
disjoining pressure as

M(x) = P0(x) = P; (8)
where P; is the pressure in the meniscus and PNO(x) is the value of

the component P,, of the pressure tensor at the surface of tension.
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Eq.(8) connects I directly with statistical mechanics, because P,
can be expressed through integrals over the intermolecular
potentials and the pair correlation functions - see e.g. Ref.{12],
Eqs.(34.6)~(34.8).

Let ¢{x) be the running slope angle of the meniscus surface:

dz

= = 9

tang I (9)
By using the method of the local balance one can derive the

tangential [7]

d(ocos ¢) osing _
Tz + = P, {10)

and the norxmal [24]

d(osin @) gsing _ .
T + =~ P, I (x) (11)
capillary force balances at each point of a meniscus surface in the
transition zone. Egs.(9), (10) and (11) form a full set allowing
the calculation of z(x), ¢(x) and o(x) provided that II(x) is known
from the molecular theory.

The elimination of P_, between Eqs.(10) and (11) yields [24]:

do

T - -I[(x)cose (x) (12)

The‘latter equation, shows that hydrostatic equilibrium in the
transition region is ensured by simultaneous variation of o and IL.

Lét Xp is large enough to ensure o(xp) = gl - see Fig.2. Then
by integrating Egs. (10) and (11) as explained in Ref§ [9,24] one

can derive

Xg ' \id
x = 2x, osin2¢ _ asin2¢] dx (13)
OI XCOS ¢ Xcos ¢

=
|

%
1 id _ a 14
= Lemy £ o e (14)
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where the subscript "id" refers to the idealized system, i.e. to
the extrapolated meniscus surfaces. In particular
(I id = P, for 0 < x < Xqy ;
=0 for x > r

One sees that v is an integral effect due to the difference of the
disjoining pressure in the real and idealized systems, whereas x is
also an integral effect but determined by o(x) and the slope angle
¢ (x) rather then by I(x). The fact that x and r are represented as
integrals over small differences suggests that they should be very
sensitive to minor variations of the functions in the integrands.
In this respect the replacement of a(x) in Eq.(10) by ol may
substantially affect the result of the calculations. We will come
back to Eg.({(13) by the end of this paper to discuss  the
experimental values for the line tension presented in the next

section.

The substitution of T from Eq. (14) into Eg.(5) yields

’ X
sina; = ?T%; Oj [(m) 29 - m(x) Jxax (15)

Eq. (15) allows calculation of the egquilibrium contact angle a; when
the disjoining pressure distribution II(x} is known.

The microscopic theory of the transition region film—meniscus
was generalized in Ref. [27] for nonequilibrium thin f£ilms of
arbitrarily curved interfaces. Due to the more complicated geometry
in this case the apparatus of the differential geometry was
utilized. In particular, for the symmetrical film sgketched in
Fig.2, the following generalizations of Egs.(10) and (11) were

derived:
d{ocos ¢) osing _ , . - |
Tr o TR T Por|oi- o (0f- oRf)oote]  U1O)
and
d(osin @) ogsing _

SR8 L TSRO - i + (i oftt-(0f2- 0l tane] (47
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Here Q,,, Q,, and Q,, are the values of the respective components of
the vigscous stress tensor at the film surface, and the superscripts
*in" and "out" indicate the fluids inside and outside the film.
Egs. (16) and (17) hold both for small Reynolds numbers. When the

£ilm surfaces are tangentially mobile (low surfactant
concentrations), additional effects, like surface diffusion and
surface viscosity, should be also taken into account - see
Ref.[29]).

Dynamic éffects, due e.g. to viscosity and diffusion, can
disturb the profile ¢ (x) of the transition zone between the film
and the meniscus as well as the distribution o¢(x) of the
interfacial tension in this zone. In accordance with Egs.(13) and
(15) these effects can also contribute, along with the equilibrium
interaction between the film surfaces, to the values of the line
tension and the contact angle. Hence the concept of "dynamic line
tension” can be introduced. In many respects it is analogous to the
concepts of dynamic¢ surface tension or dynamic contact angle. The
new experimental data presented below demonstrate that the dynamic
line tension can affect considerably the Neumann - Young force

balance at the contact line encircling a foam thin film.

3. EXPERIMENTS WITH BUBBLES ATTACHED TO A LIQUID SURFACE

In our previous study [8] we investigated the contact angles
formed with shrinking air bubbles attached to a liquid - air
interface. The experiments yielded line tension values varying with
the radius of the contact line and having a magnitude up to 100 nN
for large bubbles. This line tension effect was accompanied with
variations in the film tension, ¥, of the black foam film formed at
the top of the bubble. The careful check of the experimental
procedure [30,31] confirmed the reliability of the obtained values
of x and y¥. It should be noted that the equilibrium theory of de
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Fig.3. Experimental cell of variable pressure - cross section. 1 - teflon
holder, 2 and 3 - screw covers, & and 5 - optical glass plates, 6
and 7 - isolation rings, 8 - connection with the pump.

Feijter and Vrij [7] predicts k = -0.001 nN for Newton black films.

We believe that the only proper way to reveal the nature of
the physical effects, giving rise to the large line tension values
measured in [8], is to study directly the role of different factors
on the contact angle, film and line tensions. The first thing we
did was to check the role of the type of the surfactant. Toward
thig aim in [32) we replaced the anionic surfactant (SDS), used in
[8] with a nonionic surfactant. The experimental results for this
system yielded zero line tension.

The aim of the present study is to investigate the role of
some nonequilibrium (dynamic) effects such as the motion of the
contact line. An experimental cell of new construction allowed us
to perform measurements with bubbles of diminishing, expanding and
fixed constant equatorial radii.

A scheme of the new experimental cell is presented in Fig.a;
The cylindrical holder 1, and the two screw covers, 2 and 3, are
made from teflon. The upper and the bottom plates, 4 and 5 are
optically plane-parallel glass. Two plastic rings, 6 and 7, placed
between the glass plates and the holder, provide hermetic

insulation of the cell interior from the outer air. The pressure
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inside the cell can be controlled through the orifice 8, which is
connected with the pump by means of teflon hoses. In our experiment
we used a water jet pump.

A cylindrical glass vessel (of diameter 1.2cm and height
1.3cm) containing the surfactant solution is placed inside the
cell. The solution forms a slightly convex meniscus, which keeps a
small floating bubble at the center of the interface solution-air.
At the beginning of each experiment the upper screw cover is open
and a bubble of suitable size is blown out of a glass syringe. Then
the cell is closed to allow saturation of the vapors above the
sothion. Before entering the éell, the air is pumped through a
glass container partially filled with water. Thus saturation of the
water vapors in the hoses is also ensured., The pressure adjustment
is done'by a special screw valve of fine pitch., In addition, a pet
cock cbntrols the connection of the system with the pump, or
altérnatively, with the atmosphere. In this way the pressure in the
cell can be either decreased, or made egual to the atmosphexic
pressure.

In an hour and a half the bubble becomes small enough

Z )

P

Te X

Fig.4. Cross section of an air bubble attached to a liquid - air interface.
T,» R and R, are the radii of the contact line, bubble equator and

film curvature, respactively; y, o and x are the film, surface and
line tensions,
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(equatorial radius R < 300um) and the measurements can be started.

The radius r, of the contact line (Fig.4) is measured in reflected

1ight (illumination through the microscope objective). The

equatorial bubble radius R is measured in transmitted light., To

increase the accuracy, the values of r. and R were recorded

visually at the moment, when the diameter of the respective
circumference was equal to an integer number of scale divisions.
The measured values of R and r, vs time t are interpolated by means
of smooth curves as explained in Ref.[B]. The radius of curvature
of the film Ry was measured by shearing differential interferometry
by using method developed in Ref.[33].

The light source was a high - pressure mercury lamp (HBO ~
50W) combined with a filter transmitting only the green spectral
line of wavelength 546 nm. In order to produce interference pattern

of better contrast we used illumination screen grid with a constant

equal to 48um, the same as in Ref. [33]. The principle of the

differential interferometry and the construction of the microscope
are described in detail in Refs. [34,35]. The application of the
shearing method to measuring the curvature of fluid interfaces is
given in Refs. [30,33,36].

A shearing distance d = 24ym was fixed at the beginning of
each experiment and was not changed during the experiment. After
the disappearance of the studied shrinking bubble, the radius of
curvature, Rg, at the top of the convex liquid meniscus in the
cylindrical container with the solution was measured. This was done
by taking a photograph of the differential interference pattern
created by this convex meniscus after removing the upper glass
cover of the cell. A microscope objéctive (x6.3) was used in this
cage. The measured values of Ry are necessary for calculating the
shape of the meniscus around a bubble by using the procedure

proposed in Ref.[31] _
A typical photograph of the Aifferential interference pattern



Fig.5. Differential interference pattern in light reflected from the cap of
a floating bubble and the liguid meniscus around it.

created by the cap of the bubble (the film) is presented in Flg. 5.
Just as in Refs. [32,33] three kinds of interference fringes,
called. "streaks", "rings" and "moustaches", are observed. In
comparison with the experiments in Ref. [33]) we used a longexr =~
distance objective (x12.5) (instead of (x25)), because of the
presence of the upper glass cover in the experimental cell of
variable pressure. This led to the appearance of a greater number
of streaks and rings than in Ref. [33].

As it is shown in Refs. [32,33] the streaks are due the light
reflected by the spherical film, whereas the rings are due to
interference of the light reflected by the film and the meniscus
surfaces. One sees in Fig. 5 that the streaks appear on a darker
background, than the rings. This is due to the higher reflectivity

of the meniscus surfaces. Ag a result, it turns out, that the rings
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yleld the value of R; with better accuracy at shorter exposure

times than the streaks. That is why in the present work we used the

rings for calculating R¢g. In all cases when R was independently

determined from streaks and rings on the same photograph,

colncidence of the results was established in the framework of the
experimental accuracy.

4. EXPERIMENTAL PROCEDURE AND RESULTS

The spontaneous diminishing of the bubble accelerates with
time until eventually the bubble disappears. However the
experimental cell in Fig.3 enables one to prevent the disappearance
of the bubble and to investigate several subsequent spontaneous
shrinkings of the same bubble. This is achieved in the following
way.

When the equatorial bubble radius R comes down to about 150um
one suddenly decreases the pressure inside the cell (by using the
water jet pump) and then one keeps it constant. In accordance with
the ideal gas low V=const/P, volume V of a bubble, containing
congstant amount of gas, increases as the pressure P, inside the
bubble decreases. After a constant presure has been established the
enlarged bubble starts again shrinking spontaneously and all
measurements of r,, R and Ry can be repeated. The values of the
cgontact angle a (see Fig.4) are calculated from the measured R and
r, by using the procedure described in Section 3 of Ref.[8]. The
only difference is that instead of the asymptotic formula (11) in
[8] we used computer integration of Laplace equation in order to
determine ¢.. This was neaded Dbecause the bubbles studied in the
present work are larger than those in Ref.[8] and the asymptotic
equations from Ref.[8) are less accurate than the numerical

integration. The method for numerical integration of the Laplace
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equation for the bubble surface is similar to the one used in
Ref.[32].

Beside experiments with shrinking bubbles, the cell depicted
in Fig.3 allows also studies of expanding bubbles. A bubble expands
when the rate of shrinking due to the gas escaping from the bubble
becomes smaller than the rate of expansion due to the decrease of
the pressure inside the cell. The pressure decrease can Dbe
controlled by means of the screw valve. The procedure for measuring
R and r,, as well as the computation of the contact angle a, are
the same as for shrinking bubbles. The rate of forced expansion in
our experiments was 2 to 10 times higher than the rate of
spontaneous shrinking.

The spontaneous diminishing of the bubble size can be stopped
by a gradual decrease of the pressure inside the experimental cell,
so that the effect compensates exactly the shrinking due to the gas
escape. The process of spontaneous shrinking is relatively slow
when the bubbles are not too small: its rate is dArR/dt = 0.025um/s
at R = 200um but it rises to 4R/4dt = 0.40um/s at R = 80um. It

(degl 0

"r’:‘;('/.
14 | !

100 200 R Ipm
Fig.6. Values of the contact angle a of one and the same bubble at
different conditions: 0-1 and 2-3 - spontaneous shrinkings; 3-4
gradual expansion, 4-5 relaxation at fixed R; 5,6,...,12 -

equilibrium values of a for different fixed R.
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turned out to be possible to keep R constant for large bubbles with
an accuracy of x5um by manual adjustment of the pressure (by means
of the fine screw valve).

Curve 0-1 in Fig.6 represents the values of the contact angle
o« during the first spontaneous shrinking of a bubble formed in a
0.05% SDS solution with 0.25 mol/l NaCl. One sees that o decreases
with R (i.e. with time). At the moment when R = 150 um the bubble
was forced to expand up to a radius R = 250 um as described above.
Tnis corresponds to transition from point 1 to point 2. Since the
process is fast we could not measure values of R and r, for this
transition. Curve 2-3 shows the values of « during the second
spontaneous shrinking of the same bubble. The contact angle 1is
pronouncedly smaller compared‘with the first shrinking. When R came
down to 150 um (Point 3) the bubble was gradually expanded up to R
= 260 um (Point 4) with a mean velocity of the contact line dr_/dt
= 4 um/min. Curve 3-4 shows that the contact angle a keeps the
tendency (just like for the curves 0-1 and 2-3) to decrease with
time although now R is increasing. When the radius reached R =
260pm the expanding was stopped and further decrease of a with time
was observed - Curve 4-5. The contact angle relaxes forx about 30
min and eventually attains some constant (equilibrium) value o,
(point 5).

After the relaxation 4-5, the bubble was allowed to shrink (by
controlled increase the of pressurxe inside the cell) from R = 260um
to R = 230um (from point 5 to point 6) and was stopped again.
During this shrinkiﬁg the contact anggle has a little icrease and
then it relaxes again after R has been fixed. The equilibrium
values, a,, of « in points 5 and 6 turned out to coincide in the
frames of the experimental accuracy. Then this procedure was
repeated several times: all the transitions from 5-6 up to 11-12
correspond to shrinking, whereas the values of o« in points 5,
6,...., 12 are the equilibrium contact angles reached after the

relaxation. This experiment shows that the equllibrium value, g,
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Fig.7. The contact angle a of an air bubble as a function of the equatorial
bubble radius R (a), and of time (b}. 0-1 - spontaneous shrinking;
1-2 relaxation at R = 152pm; 2-3 gradual expansion; 3-4 -
spontaneous shrinking.

of the c¢ontact angle does not depend on the bubble size in the
investigated range of radii.

Additional information about the dynamic behavior of the
contact angle of small bubbles is provided by the experimental data
about subsequent expansion and shrinking of a bubble that has
reached previously equilibrium. This data are presented in Fig.7.
In Fig.7a a is plotted versus the bubble radius R, whereas in Fig
7b the same data for a are represented as a function of time.

Curve 0-1 corresponds to the initial spontaneous shrinking of
the bubble at atmospheric pressure. At R = 150um the process of
shrinking was stopped as described above. The contact angle of the
stopped bubble with constant R decreased from 13.59 to an
equilibrium value a = 12.2%. The relaxation {1-2) took 30 min., (If
the bubble had not been stopped, it would have shrinked from R =
150pm to R = 0 for about 40 min.) Then the bubble was gradually
expanded from R=150um to R=220um with an average rate dR/dt =
2.5um/min. It is important to emphasise that no changes of the
contact angle were observed during this process of expansion: a =
oy on the portion (2-3) of the curves in Fig.7. After the
expansion, the bubble was allowed to shrink spontaneously again at

constant pressure in the cell - curve (3-4). As shown in Fig.7, the
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shrinking was accompanied by an increase of the contact angle. The
latter exhibits a tendency of leveling off at a value of about 13°
for the small bubbles (Fig.7a).

The comparison between the processes (2-3) and (3-4) in Fig.7
shows that in the case of a receding meniscus (expanding contact
line) the contact angle maintains its equilibrium value, whereas in
the case of an advancing meniscus (shrinking contact line) the
contact angle increasingly deviates from its equilibrium value.
Such behavior is typical for the hysteresis effects observed often
with contact angles under dynamic conditions. In the case of smooth
and homogeneous interfaces the hysteresis can be due to the
interactions between the two meniscus surfaces [37].

The vertical and the horizontal projections of the Neumann -
Young force balance provide two equations for independent
calculation of the film tension, y, and the line tension, x (see
Fig.4 and Egs. [6-7] in Ref.[8]):

y = ¢ (sing. + sing.,) / sind (18)
x = or [cosp, + cosy, - (sing. + siny;) cot@) (19)

Here ¢ is the solution surface tension,

r
8 = arcsin( —=°) (20)
Re
-5 |t 4 {b)
InN]
100
¥ ¥
(mN/m]
50
0 A : - 0 : -—
0 50 100 timelmin) 0 50 - 100 timelmin]
Fig.8. Relaxation of the line tension x (a) and of the film tension y (b)

with time t at fixed equatorial bubble radius (0.25 mol/1 NaCl).
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and the angles ¢, and ¢, are calculated as described in
Refs.[8,32]. The dependence on the time t of the values of the line
and film tensiops, kx and ¥y respectively, calculated from
Eqs.(18,19) for a stopped bubble (R = const; similar to the
portions 4-5 and 1-2 in Figs. 6 and 7 respectively) are shown in
Fig.8.

Time zero in Fig.8 corresponds to the time moment, when the
equatorial radius R of an initially shrinking bubble was fixed by
regulation of the pressure inside the experimental cell. yg in
Fig.8 is the equilibrium film tension of macroscopic f£ilms measured
by de Feijter [18].

The values corresponding to the open and the full circles in
Fig. 8 were measured with two stopped bubbles of radii R = 282um
and R = 265um, respectively. The full and open triangles correspond
to two smaller bubbles, both of them of radius R = 152um. Each of
these four bubbles was formed in a SDS seclution containing 0.25
mol/l NaCl. Each point corresponds to the moment when a photograph
of the differential interference pattern was taken. The data
demonstrate that both the film tension, ¥, and the line tension, x,
exhibit relaxation with time. x tends to zero in the framework of
the experimental accuracy. y tends to its equilibrium value yg =

64.4mN/m, measured by de Feijter (18] with macroscopic¢ rectangular

T"ﬁ'; A
[mN/m1]F

100
050

[

T T T[]

010 &
005 |-
%5 50 100 time Iminl
Fig.9. The data for the film tension y from Fig. Bb presented in a log

scale vs time t.
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films. Obviously the smaller bubbles relax faster than the largerx
ones.

Fig. 9 represents the same data as in Fig. 8b, but on a log
scale on the ordinate axis. The slope yields relaxation time 7, =
50min for the larger bubbles and Tty = 10min for the smaller ones.

The respective contact radii {upon full relaxation) are r.,; = 85um

2
T r
and r,p = 37pum. It is interesting to note that .?%z.:ﬁg==0.19, i.e.
el

the larger the film area, the longer the relaxation. The relaxation
times calculated from the data for x (Fig. 8a) coincide with 7; and
Ty as determined from the relaxation of y (Fig. 8b). Similar
results were obtained with the solution of BSDS containing 0.32

mol/l NaCl.

5. GCONCLUSIONS

The general conclusion from the experiments described in the
previous section is that the contact angle, film and line tensions
of spontaneously shrinking bubbles in the investigated solutions
have nonequilibrium wvalues. This oconclusion is based on the
following facts.

There is pronounced difference between the contact angles
measured during two consecutive spontaneous shrinkings realized
with the same bubble — compare curves (0-1) and (2-3) in Fig.6.

When the spontaneous shrinking of a bubble is stopped by
fixing the equatorial radius R (i.e. the capillary pressure) a
relaxation of the contact angle «a is observed - see curve (4-~5) in
Fig.6 and (1-2) in Fig.7. During the relaxation a changes with more
than 10 for the investigated solutions.

Tf after the contact angle has relaxed the bubble is allowed

to shrink spontaneously again, the contact angle deviates from its



e WO e AT N e S AL

08

equilibrium value, «,, and starts increasing - see curve (3-4) in
Fig.7. The latter fact implies that the shrinking of the contact
line causes deviation of the contact angle from its equilibrium
value.

The new experiments with small air bubbles described in this
paper confirm the large values of the film and line tension (y >
20l, ¥ ~ —100nN) measured in Ref. [8] with shrinking bubbles formed
in 0.05% agueous solutions of sodium dodecyl sulfate at 0.25 and
0.32 mol/l added NaCl. (see the values of y and ¥ in Fig.8 at the
earlier times.)

Similarly to the contact angle a, the film and line tensions,
vy and x, of a "stopped" bubble exhibit relaxation. The relaxation
time 1s longer for the larger bubbles (see Figs.8,9).

During the relaxation the parameters a, y and k¥ are connected
through the equation (cf. Eg. (1) in Ref. [38]).

1 _ 20, k _g

cos &V VI (21)

For example, the data in Fig. 8 (the larger bubble) shows that the
change of the first term in Egq. (21) during the relaxation is
0.0023, of the second term: -0.0189, and of the third term:
~0.0162, The conclusion is that the variations of the film and line
tensions counterbalance each other in order the equilibrium
condition, Eq. (21), to be satisfied.

The line tension x during the relaxation tends to zero in the
framework of the experimental accuracy (F15nN). This experimental
finding is compatible with the theoretical result of de Feijter and
Vrxij [7], who calculated k = -0.001nN for equilibrium Newton black
films.

The film tension ¥ tends during the relaxation to an
equilibrium value, which agrees well with the value measured by de
Feljter (18] with macroscopic equilibrium films.

The results for ¥ are also in agreement with the experiments

of Platikanov et al. {39], who recovered de Feijter's equilibrium
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values of y in experiments with bubbles fixed at the tip of a
capillary (immobile contact line}.

The new data shed some light on the line tension measurements
with shrinking bubbles. In particular, the change of the contact
angle with the bubble radius, which was interpreted in Ref. [40] as
a line tension effect can well be due to the observed
nonequilibrium phenomena. This arouses considerable doubt about the
reliability of the line tension values reported in a number of
publications [40-45].

The results from the present study suggest the introduction of
a concept of a "dynamic line tension", amnalogous to the "dynamic
interfacial tension" and "dynamic contact angle". It is worthwhile
noting that the equilibrium line tension, as predicted by the
theory [4,7), is an extremely small quantity (of the order of 10~
- 10’12hn, so it usually turns out to be below the threshold of the
experimental accuracy. On the other hand, the dynamic line tension
can bhe many o;ders of magnitude greater. It can affect the value of
the contact angle and the processes accompanying the motion of a
three — phase contact line.

The processes giving rise to the dynamic line tension deserve
a separate study. They are probably connected with 1local
alterations of the interfacial shapes and tensions in a narrow
vicinity of the three - phase contact zone. In accoxdance with
Eqgs. (13) and (15) such alterations contribute to the valus of the
line tension and contact angle.

We hope the results will be useful in all cases when the
interaction Dbetween colloidal particles 1is accompanied with
formation of a three - phase contact line: flotation of ores;
stability of emulsions and microemulsions; interaction of a
biological cell with other cells, with droplets or with solid

surfaces, etc.
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