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Abstract 

The main purpose of this study is to find explicit expressions for the interfacial bending moment 
and for the Tolman length in terms of the interfacial tension at the flat interface and of the 
Hamaker constants of the two neighboring fluid phases. For that purpose a model expression for 
the anisotropy of the pressure tensor in the vicinity of a spherical interface is obtained by utilizing 
the Irving and Kirkwood formula in conjunction with some general thermodynamic restrictions. 
In particular, asymptotic expressions for the pressure tensor tails are derived. The results allow 
calculation of the curvature dependence of the interfacial tension due to the van der Waals inter- 
action. They are applicable to microemulsions, critical emulsions and homogeneous nucleation. 

1. INTRODUCTION 

The physical dependence of interfacial tension, y, on the curvature of a fluid/ 
liquid interface can be described by means of the Tolman equation [ 1,2] 

(1.1) 

where yO is the tension of the flat interface, a is the radius of the equimolecular 
dividing surface and S,, is the so-called Tolman length. If 

6=a-a, (1.2) 

is the distance between the equimolecular dividing surface and the surface of 
tension, then ~5, is the limiting value of S for a flat interface [ 21: 

8, = lim 6(a) (1.3) 
l/a-O 

The radii a, and a are defined by means of the equations [ 2,3] 



(1.4) 

and 

ay (4 a7 
aa, a_0 

=--- aa (1.5) 

where the derivatives in parentheses correspond to formal variation of the di- 
viding surface radius, a,, at a fixed physical state of the system (see Ref. [ 41). 
To find the next term in the expansion (1.1) one has to know the dependence 
of6ona. 

The Tolman equation (1.1) provides a thermodynamic basis for calculation 
of the curvature dependence of interfacial tension. The next step is to deter- 
mine S,, for a specified system by means of a statistical mechanical model. 
Kirkwood and Buff [ 51 calculated S, = 3.63 A for the surface of liquid argon at 
90 K. They used a modified Lennard-Jones potential along with an analytical 
expression for the pair correlation function based on experimental data from 
X-ray diffraction. For the same system, Hill [6] calculated 6,=2&l A by uti- 
lizing an alternative quasi-thermodynamic approach. Plesner and Platz [7] 
have used the procedure of Hill an combination with a different equation of 
state. They calculated S, = 2.01 A for liquid argon at 84 K. Toxvaerd deter- 
mined values of S, for Lennard-Jones fluids on the grounds of a quasi-ther- 
modynamical approach [ 81 and of a statistical-mechanical approach [ 91. The 
latter approach yields S, twice as great as the former. This difference is due to 
some peculiarities in the pressure tensor profile obtained in Ref. [ 91, which 
are not confirmed by the molecular dynamics computer simulations [lo]. 

The theoretical models of different authors cited above predict not only val- 
ues for S,, but also for y,,. The latter as a rule are in poor agreement with the 
experimental values of the interfacial tension. Most probably this is due to 
different simplifications adopted in the models in question. As far as we know, 
the first statistical mechanical model providing an excellent agreement with 
the experiment (with respect to y9 ) is that of Croxton and Ferrier [ 111. These 
authors calculated also S,, = 3.84 A for liquid argon at 84.3 K. 

Rusanov and Brodskaya [ 12,131 investigated the surface tension of very 
small drops by the molecular dynamics method. In their computer simulations 
they used no more than 500 molecules incorporated in a spherical droplet. 
They used the intermolecular Lennard-Jones potential and confirmed that the 
interfacial tension decreases with decreasing droplet radius, i.e. S, is positive. 
Thompson et al. [lo] also used the method of molecular dynamics in conjunc- 
tion with the “shifted” Lennard-Jones potential but they studied larger drop- 
lets - up to 2048 molecules. These authors calculated more precise pressure 
tensor distributions and dependences of the surface tension on curvature, con- 
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firming the results in Ref. [ 131. A positive S, was obtained also in the computer 
simulations by Powles et al. [ 141, who introduced an alternative approach 
connected with the Kelvin formula for the vapor pressure of small drops. 

A different approach to the same problem was developed by Falls et al. [ 151. 
They used the van der Waals equation of state together with a statistical model 
based on the gradient approximation [ 161 to calculate the pressure tensor dis- 
tribution, y (a,) and S( a,). The main results are in qualitative agreement with 
the data from the molecular dynamics quoted above. 

Hemingway et al. [ 17,181 developed the penetrable-sphere model, for which 
Scan be obtained explicitly in the mean-field approximation. Surprisingly, this 
model yielded negative values of S,, which could be due to the admittedly un- 
realistic Hamiltonian. These results led the authors to some doubts about the 
validity of Eqn (1.3). Fisher and Wortis [ 191 studied the problem and con- 
cluded that within the approximations of Landau theory there seems to be no 
reason to doubt the validity of Eqn (1.3 ). 

There have been several attempts at the experimental measurement of S,. 
In all of them some indirect data for the curvature dependence of the interfacial 
tension are processed in accordance with the Tolman equation [Eqn (1.1) 1. 
Nielsen et al. [20,21] determined S, for some emulsion systems containing 
water, oil and alcohol; in particular they found S, = 2.4 A for tribromomethanel 
water-methanol and S,= - 1.3 A for 1,2-dichlorobenzene/water-methanol. 
Fisher and Israelachvili found a change of y with a, with 6> 0, for cyclohexane 
[ 221, but could detect no change with water [ 231. Wingrave et al. [ 241 calcu- 
lated curvature-dependent surface tensions for hydrodynamic liquid imbibi- 
tion in initially evacuated mesoporous Vycor spheres. These authors found S, 
ranging from 1 A to 10 A for the various liquids studied. 

A new interest in the curvature effects on interfacial tension was awakened 
by the experiments with microemulsions (see the work by Overbeek et al. [ 251 
and the references therein). The microemulsion droplets not only have high 
curvature, but also they exhibit a very low interfacial tension. Therefore the 
curvature effect turns out to be important. 

An approach to the curvature effect on the interfacial tension, which can be 
applied to microemulsions, is connected with the so-called interfacial bending 
moment, B (see for example Refs [26,27] ). Its limiting value for a flat inter- 
face is simply connected with the Tolman length [ 28,291: 

&I =2X& (1.6) 

The electrostatic, van der Waals and steric interactions yield contributions to 
the total bending moment B. For a typical microemulsion B can be represented 
in the form [29] 

B=B,+B,+B,+B, (1.7) 

where the four terms in the right-hand side account for the contribution of the 
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surfactant, cosurfactant, electrolyte and the two pure immiscible liquids (oil 
and water). The last contribution, B,, which is due to the van der Waals inter- 
action between the two liquids, can be of the order of the electrostatic contri- 
bution [ 291, but it has not been accounted for in the available theories of mi- 
croemulsions [ 251. 

Our aim in the present series of two papers is to express explicitly the inter- 
facial bending moment, B, and the Tolman length, 6, for the interface between 
two immiscible fluids (without adsorbed surfactants) through the Hamaker 
constants of the two liquids and the interfacial tension, yo, of the flat interface. 
In other words, our purpose is to calculate B and 6, but not ‘y. (the value of y. 
is usually available by experiment). For that purpose we will use the expressions 

and 

(1.8) 

(1.9) 

derived in Ref. [ 271. Here a, is the radius of an arbitrary dividing surface and 

AP=PN -PT (1.10) 

represents the anisotropy of the pressure tensor with PN and PT being its nor- 
mal and transversal components (see for example Refs [ 2,301). Equations 
(1.8) and (1.9) are generalized for arbitrarily curved (non-spherical) inter- 
faces in Ref. [ 311. 

One can check that y and B in Eqns (1.8) and (1.9) satisfy the relation [ 261 

(1.11) 

Equation (1.11) can be considered as a thermodynamic definition for the in- 
terfacial bending moment. In particular, Eqns (1.4) and (1.11) show that B is 
identically zero for the surface of tension. 

It is worthwhile noting that the presence of the interfacial bending moment 
leads to a difference between the thermodynamical and mechanical interfacial 
tensions, y and cr: 

B 
f7= y+G 

x 
(1.12) 

(see Ref. [ 271 for more details). By substitution from Eqns (1.8) and (1.9) 
into Eqn (1.12), one can represent the mechanical interfacial tension also in 
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the form of an integral over the pressure tensor anisotropy dP (see Eqn (2.4) 
below ) . 

There are different statistical models for calculation of the pressure tensor 
[ 3,32-341. They differ because of the different choices of the contour joining 
two interacting molecules. Some authors [3,17] interpret this fact as an arbi- 
trariness in the definition of the pressure tensor, leading to arbitrariness in the 
mechanical definition of the Tolman length. Our viewpoint is somewhat dif- 
ferent. The validity of many results in molecular physics (like the expressions 
for the pressure tensor) is limited to the reliability of the statistical model used. 
In such a situation only experiment can decide which is the best model expres- 
sion for the pressure tensor. In as far as an experimental indication is still 
missing, we will make use below of the conceptually most simple expression of 
Irving and Kirkwood [ 321. 

Our approach for determining dP consists of the following. The asymptotic 
behavior of AP far from the interface is determined by means of the Irving- 
Kirkwood expression along with the attractive part of the Lennard-Jones in- 
termolecular potential. (This is done in the present paper.) A model expres- 
sion for the behavior of AP close to the interface is constructed under the ther- 
modynamic restriction to yield y , satisfying Eqn (1.5) for all radii a and y= Y0 
for a flat interface (cf. also Eqn (1.8) ). In the second part [ 351 of this study 
the resulting expression for AP is applied to calculate the interfacial bending 
moment B and the Tolman length 6 for various liquid/gas and oil/water inter- 
faces. Of course, this calculation gives only the contribution of the van der 
Waals forces to the interfacial bending moment of a microemulsion droplet, 
denoted by B, in Eqn (1.7). The other terms in Eqn (1.7) can be calculated as 
explained in Ref. [ 291. 

2. THERMODYNAMIC DESCRIPTION OF THE SYSTEM 

The system under consideration consists of a spherical drop (or bubble), 
phase I, surrounded by another fluid phase (phase II). We will suppose that 
the phase I is composed only of pure component 1 and phase II is composed 
only of pure component 2. Then at constant temperature the Gibbs adsorption 
equation reads [ 2,4] 

(2.1) 

As earlier, a, is the radius of an arbitrarily chosen spherical dividing surface; 
r, and r, are the respective adsorptions of the two components; ,u~ and pz are 
their chemical potentials. 

Let us choose a, to be equal to the radius, a, of the equimolecular dividing 
surface with respect to the component 1. In other words a is defined in such a 
way that 
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c ILka =o (2.2) 

We will consider changes in a at constant chemical potential in the outer phase, 
i.e. 

,u2 = constant (2.3) 

The substitution from Eqns (2.2) and (2.3) into Eqn (2.1) leads to Eqn (1.5). 
Our purpose below is to examine the restrictions implied on a model expression 
for dP(r,a) by the general thermodynamic equation (1.5). 

From Eqns (1.8), (1.9) and (1.12) it follows that 

a(s) = 
s 

df(r,a)Tdr 
0 

Besides, Eqns (1.8) and (2.4) yield 

(2.4) 

(2.5) 

where 

J(a,) =jM(r,a)$dr 
0 

x 

(2.6) 

From Eqns (2.4) and (2.6) one easily derives 

(2.7) 

The derivative (8y/&z,) in the left-hand side of the Eqn (1.5) corresponds to 
differentiation with respect to a, when all physical parameters, including a, are 
constant. Then from Eqns (2.5) and (2.7) one derives 

On the other hand, a substitution a,=u in Eqn (2.5) followed by differentia- 
tion yields 

87-2 da(a) : 1 @(a) 
ao 3 da 3 da 

(2.9) 

Finally, from Eqns (1.5), (2.8) and (2.9) one obtains 

(2.10) 
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Having in mind Eqns (2.4) and (2.6) one can conclude that Eqn (2.10) im- 
poses a restriction on the function dP (~-,a). 

Let b be a parameter characterizing the width of the transition region be- 
tween the phases I and II. Then 

c=b/a (2.11) 

will be a small parameter for not too small radii a. In view of (2.11), Eqn (2.10 ) 
can be transformed to read 

(2.12) 

In general, one can seek J(E) and a( t ) in the form of asymptotic expansions 

(2.13) 

for small t. Hereg,(e) where n=O, 1,2, . . . , is an asymptotic sequence of gauge 
functions (see for example Ref. [ 361 for the general theory of asymptotic ex- 
pansions); J, and a, are coefficients. The substitution from Eqn (2.13) into 
Eqn (2.12 ), in principle, provides a series of equations for determining J, and 
a,. Such an approach based on Eqn (2.12) is applied in the second part of this 
study 135 1. Below we will investigate the asymptotic behavior of dP( r,a) far 
from the interface. This investigation will enable us to find the gauge functions 
g,(e) where n=O, 1,2, . . . . 

3. OUTER AND INNER REGIONS 

It is known [2,3,30] that in the narrow transition zone between two fluid 
phases the density deviates from its values in the bulk of the phases. Below we 
will call the “inner” region the interfacial region where the density substan- 
tially changes. Besides, we will suppose that this inner region is contained in 
the interval a - b g r 6 a + b, where r is a radial coordinate accounted from the 
center of the spherical drop. 2b characterizes the width of the inner region with 
respect to the density profile. Alternatively, the region 0 < r < a- b of phase I 
and the region a+ b < r c m of phase II will be called “outer” regions I and II, 
respectively. The changes in the density are negligible in the outer regions. 

As shown schematically in Fig. 1 the anisotropy of the pressure tensor is well 
pronounced in the inner region (see for example Refs [2,9,10,15] ). The an- 
isotropy vanishes in the outer regions, which contain only the “tails” of dP. 
As discussed by Rusanov [37] the width of the region, where the anisotropy of 
dP is not negligible, is one order of magnitude larger than 2b. Therefore the 
contribution of the outer regions to the intergrals rs and J in Eqns (2.4) and 
(2.6) cannot be a priori neglected. Accordingly, one can write 
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a(a)=a’(a)+a’“(a)+a”(a) 

J(u) d’(u) +2”(a) +J”(u) 

where 

a-b 

o’(u) = 

s 

dP’( r,u);dr 

0 

a+b 

fP(u) = 

s 

dP’“(r,u);dr 

a-b 

cc 

a”(u) = 
s 

dP”(r,u);dr 

a+b 

(3.1) 

(3.2) 

a-b 

J’(u) = j- dP(r,u)$dr (3.3) 
0 

sib 

~‘“(a) = J dP’“(r,u);dr 

a-b 

J”(u) = 5 dP”(r,u)$dr 

a+b 

(3.4) 

(3.5) 

Here the superscripts “I”, “II” or “in” denote the values of dP(r,u) in the 

. AP 
A 

OUTER 

REGION I 

I 

I 
I 

INNER 
I 

I I 
I I 

I 
REGION I 

I 

Fig. 1. Sketch of the anisotropy of the pressure tensor distribution, dP=P, -PT, as a function of 
the distance to the equimolecular dividing surface, in a system of two neighboring fluid phases; b 
represents the half-width of the transition region. 
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respective regions. Model expressions for dP’ and dP” are derived below, 
whereas dP’” is considered in the second part [ 351 of this study. The parameter 
b is also liable to determination in the framework of our model: values of b for 
different liquid-liquid interfaces are listed in Tables 2 and 3 of Part II [ 351. 

4. MODEL FOR CALCULATION OF dP’ AND dP” 

A rigorous asymptotic expression for dP far from a flat interface was derived 
by Kuni and Rusanov [ 38,391 for van der Waals interactions. The leading term 
of this asymptote (in our notation) reads 

AP’=$; 

AP”= &A+ 

(4.1) 

(4.2) 

where y is the absolute value of the distance to the interface and 

A, =x2(%PI -&12P1P2) (4.3) 

112 =x2 bJ22d - ~12PlP2) (4.4) 

with pl, pZ being the number densities of the two bulk phases and (Yij (i, j= 1, 
2 ) being the London constants of interaction between two molecules from the 
respective components (phases). It should be noted that some approximate 
statistical theories yield an exponential decay both of the pressure tensor and 
of the density profile (see for example [ 401). However, as pointed out by many 
authors [ 411, exponential tails are not the correct behavior for both these pro- 
files. The right asymptotes decay proportionally to y -’ (see Ref. [ 391). 

Asymptotes similar to Eqns (4.1)) (4.2) have been derived by Kuni and 
Rusanov [39,42] for the case of slightly curved interfaces (b << ~<<a), which 
is not the case considered here. In our case b << a but y and a are quantities of 
comparable magnitude. We will derive expressions for AP’ (rp) and API’ (r,a) 
by using the Irving-Kirkwood equation for the pressure tensor [ 2,3,32] : 

(4.5) 

Here U is a three-dimensional idemfactor, kn is the Boltzmann constant, T is 
temperature, pi and p r’ are the singlet and pair distribution functions for the 
respective components, R is a vector connecting two molecules of components 
i andj having a potential energy of the van der Waals interaction 

%j 
Vij= -2 (4.6) 
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R=IRI=(r,-r,I 

(see Fig. 2). The position vectors 

r,=r-qR r2=r+ (1-q)R 

determine the location of the two molecules. By definition [ 431 

pp’(r1,r2) =pi(rl )pi(r2 )gF’(r,,r,) 

where gr’ ( r1 ,r2 ) is the pair correlation function. 

(4.7) 

(4.3) 

(4.9) 

It should be noted that the integral term in Eqn (4.5) corresponds to a spec- 
ified model for calculation of the contribution of the intermolecular interaction 
to the pressure tensor P. Other possible models are considered in the works by 
Kirkwood and Buff [ 51, Harasima [ 331, Schofield and Henderson [ 341. The 
different models correspond to different choices of a contour joining the inter- 
acting molecules. The expression of Irving and Kirkwood (4.5)) corresponding 
to a straight line (Fig. 2)) is the most natural, and the one generally used [ 31. 

In the case of a spherical drop it is convenient to introduce spherical integral 
variables R, 8, p (see Fig. 2). By carrying out the integration with respect to 
the azimuthal angle u, one can derive from Eqns (l.lO), (4.5) and (4.6) 

dP(r)=3nldp(l-3P)~d~~~P(l’(r,,r2) 
?lR 

(4.10) 
-1 0 0 

where 

pc2)(r1,r2)= 5 O!~j&‘(r,,r2) 

i,j= 1 

Fig. 2. Sketch for calculation of the Irving-Kirkwood pressure tensor in a two-phase system of 

spherical symmetry, at the point specified by the position vector r. The two interacting points rl 
and r2 are connected by the vector R, the latter passing through the point r. 
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and p= co& (the angle 19 is shown in Fig. 2 ) . We will use also the notation 

r= Irl rl = I r1 I r2=lr21 (4.11) 

To determine dP( r ) from Eqn (4.9) one needs a model expression for 
jC2) (r1,r2). Since we seek asymptotic formulae for LIP in the outer regions, 
where 1 r-a ] >> b, we will use the following model expression: 

{ 

%,p:~(R-J,) for rl, r2 <a 

pc2)(r1,r2)= ~22p;W42) for rl , r2 > a 

cy12PlP2 for ri>a, rj<a; i#j; i,j=1,2 

Here S, and 8, characterize the distance of the closest approach 
cules of the component 1 or 2, and 

for x>O 
for x<O 

(4.12) 
(4.13) 
(4.14) 

of two mole- 

(4.15) 

is the step-wise function of Heaviside. p1 and p2 are the number densities in 
the respective bulk phases. 

The expressions (4.12)-(4.14) call for some discussion. As far as the outer 
regions are considered, a step-wise density profile is supposed in Eqn (4.9). 
(Such a profile is not appropriate for the inner region, which is considered 
separately in Part II [ 351. ) The correlation function in Eqn (4.9) is taken to 
be equal to unity in accordance with the outer asymptotic expansion [ 39,44,45] 

g(R)=l+O $ ( > 
for the van der Waals interaction. 6, and 8, play the role of cut-off parameters, 
accounting for the short range repulsion in the correlation function. (Note that 
qij in Eqn (4.6 ) is divergent for R+ 0. ) It is not necessary to introduce a similar 
cut-off parameter in Eqn (4.14) because one molecule of component 1 situated 
in the outer region I cannot be in close contact with a molecule of component 
2 from the other phase II and vice versa. In other words, the width of the 
transition region b is greater than Si (i=l, 2); this is a natural assumption 
[ 371. We will note in advance that the resulting expressions for dP’ and dP”, 
which follow from Eqns (4.12)-(4.14), do not depend on 6, and S,, as could be 
anticipated (see Eqns (5.5) and (6.5) below). (Indeed, an outer asymptotic 
expression accounting for the long-range interactions cannot depend on the 
short-range repulsion, characterized by 6, and &.) 

The introduction of new integration variables 

s=yR t= (1-q)R 

in Eqn (4.10) leads to 

(4.16) 
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~~(r)=6njdp(l-3~‘)Tdsgd~~~(z)(r,,r,) 
0 0 0 

(4.17) 

It follows from Eqns (4.8), (4.11) and (4.16) that 

r: =r2+s2-2prs (4.18) 

ri =r2+t2+2jh-t (4.19) 

The substitution from Eqns (4.12)-(4.14) into (4.17) provides simple explicit 
expressions for dP’ and dP”, which are derived below. 

5. OUTER REGION I 

The outer region I corresponds to 

Q<r<a-b (5.1) 

Inview ofEqns (4.18) and (4.19) one has r’f =rT(s) andri =rg(t) at constant 
r and j?. These two functions are sketched in Figs. 3 (a) and 3 (b). 

so =/3r+JB’r”+a”-r’ (5.2) 

and 

to=-pr+Jm (5.3) 

are roots of the equations r:(s) =a2 and r;(t) =a2. The lines s=so and t= to 
divide the integration domain (s>O, t>O) in Eqn (4.17) into four parts: (ll), 
(12), (21) and (22) (see Fig. 3(c)). In the part (ll),j’“’ is to be calculated 
by using Eqn (4.12); in the part (22), by using Eqn (4.13), and in the parts 
(12) and (21),byusingEqn (4.14).ThenEqn (4.17) forr<a-bcanbetrans- 
formed to read 

1 

dP’(r,a) =6n 
s 

d/3(1-3P2) l!qs+t--8,) 

0 00 

(5.4) 

All integrals in Eqn (5.4) can be solved in terms of elementary functions. The 
result reads 
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Ap1(r9a)=-& 

3-8k2-3k4 I 3 In l-k 
- k2(l_k2)3 c&3 l+k 1 

+3&I.!! 
2k3 It-k I> 

where 

al 

b) 

(5.5) 

t‘ I cl 

Fig. 3. Outer regionI: r<a-b. (a) Sketchofthe function r:(s) [Eqn (4.18)]. For s<sO the point 
r, is in the phase I; for s> s,, the point rl is in the phase II. (b) Sketch of the function rz( t) [Eqn 
(4.19) ] . For t-z to the point r2 is in the phase I; for t > to the point r2 is in the phase II. (c) Parts 
of the integration domain in Eqn (4.17). Region (11): r, <a and r,<a. Region (12): t,ta and 
r,>a.Region (2l):r,>uand~*<a.~~on (22):r,>aandr,>a. 
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k=r/a (5.6) 

A = 7~’ (GP:: + cd - 2~121~2) (5.7) 

is the Hamaker constant and A, is given by Eqn (4.3). In particular, 6, does 
not take part in Eqn (5.5 ) because 

so to 

ss 
00 1 
and 

1 

s dp(l-3P2) =o 
0 

(5.3) 

Equation (5.5) is the sought for expression for @(~-,a). Owing to the iso- 
tropy of the pressure tensor at the drop center, one should expect that 
dP’( 0,a) = 0. Indeed, from Eqn (5.5 ) one derives 

(5.9) 

for k -=K 1. 
The limit of Eqn (5.5) for a flat interface can be obtained by substituting 

k = 1 -y/a (with y = a - r ) and by running a to infinity at fixed y in Eqn (5.5 ) . 
As a result one obtains Eqn (4.1)) as could be expected. 

6. OUTER REGION II 

The outer region II corresponds to 

a+btr<cn (6.1) 

From Eqns (4.19) and (6.1) it follows that 

rz(t) >a for t20 and O<j?<l (6.2) 

However,r,(s)>aonlywhenp< (1-a2/r2)l” (seeFig.4(a)). When (l-a”/ 
r2)“2<p,<l theequationrT(s)=a2 hastworoots:s,ands, (seeFig.4(b));so 
is given by Eqn (5.2)) and 

s1 =/3r-J- (6.3) 

The vertical lines s = so and s = s1 divide the integration domain (s S- 0, t > 0 ) in 
Eqn (4.17) into three parts (seeFig. 4(c) ). Then, having in mindEqns (4.12)- 
(4.14), (6.1) and Fig. 4(c), one can transform Eqn (4.17) to read 



115 

b) 

Fig. 4. Outer region 11: r>a+b. (a) Sketch of the function r:(s) [Eqn (4.18)] for 
P-C (1 -a2/r2f”*. The point rl isin the phase II. (b) Sketchof the function F;(S) fora> (l-a”/ 
r2)‘/2. When s < s1 and s > s,, the point rl is in the phase II. When s1 <s < s0 the point r1 is in the 
phase I. (c) Parts of the integration domain in Eqn (4.17). Region (12): rl < a and r2> a. Region 
(ZZ):r,>aandr,>a. 

Pr 00 a3 

dP”(r,a)=6n d/3(l--3/P)a2& 
s s s 

ds dt 
O(s+t--8,) 

(s+t)” 
0 0 0 B1 
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wherep,=(l-a2/r ) . 2 “’ All integrals in Eqn (6.4) can be solved in terms of 
elementary functions. The result reads 

dP”(r,a) = -$ 3-8k2-3k4 +31nK+1 
k2(k2-1)3 2k3 k-l 1 (6.5) 

where A2 and k are given by Eqns (4.4) and (5.6) respectively. Equation (6.5 ) 
is the sought for expression for dP”(r,a). Far away from the spherical drop 
(bubble) Eqn (6.5 ) yields 

dP”( r,a) = $ [;+O($,)], k>> 1 (6.6) 

The limit of Eqn (6.5) for a flat interface can be obtained by substituting 
k=y/a+l (withy=r-u) andbyrunningatoinfinityatfixedyinEqn (6.5). 
The result coincides with the known Eqn (4.2 ), as is required. 

7. DISCUSSION AND CONCLUDING REMARKS 

The main results obtained in this paper are Eqns (5.5) and (6.5) for dP’ (r,u) 
and dP” (r,u) in the outer regions I and II (see Fig. 1). (According to Eqn 
(1.10)) dP=PN -PT expresses the anisotropy of the pressure tensor.) The 
expressions (5.5 ) and (6.5 ) , referring to a spherical interface of radius a, are 
exact results in the framework of a model, in which the pressure tensor is given 
by the Irving-Kirkwood formula, Eqn (4.5), and the (modified) pair distri- 
bution function j?~ (2) (r1,r2 ) is expressed by Eqns (4.12)-(4.14). However, from 
a physical point of view the latter model expression for jC2) is acceptable only 
at a sufficiently large distance from the interface ( 1 r-u 1 > b), i.e. in the re- 
spective two outer regions I and II. In other words, Eqns (5.5 ) and (6.5 ) have 
asymptotic character. Mathematically this fact manifests itself in divergency 
both of Eqn (5.5) and of Eqn (6.5) for r-m. 

In spite of the fact that Eqns (5.5) and (6.5), as well as their limiting ver- 
sions, Eqns (5.9) and (6.6)) are results of independent interest as asymptotic 
expressions, they make sense in the framework of the program for calculation 
of the curvature effects on surface tension, proposed in the first three sections 
of the paper. The final goal of this program is to calculate the contribution of 
the van der Waals forces to the curvature effect on surface tension by using 
only information about the London constants a+ (cf. Eqn (4.6) ) and about 
the surface tension of the flat interface. We attempt to achieve this goal by 
combining some general results of thermodynamics and statistical mechanics 
(like Eqns (1.5), (1.8) and (1.9) ) with development of an appropriate model. 
The first step in this direction is made in the present paper. Indeed, the sub- 
stitution from Eqns (5.5) and (6.5) into Eqns (3.3) and (3.5) provides expres- 
sions for the contribution of the outer regions into the surface tension of a 
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spherical drop (bubble). Expansions of these expressions for small E, similar 
to Eqn (2.13), lead to a determination of the sequence of gauge functions 
{g,(a) }. Then one can find dP in the inner region by using asymptotic expan- 
sion with respect to the same gauge functions. This program is realized in the 
second part of this study [ 351, where the interfacial bending moment and the 
distance between the surface of tension and the equimolecular dividing surface 
are calculated for different fluid-liquid interfaces in the framework of the model. 
It turns out that the model is in good agreement with the numerical data for 
liquid argon and water as well with experimental data for the interfacial ten- 
sion of liquid hydrocarbons/water emulsion interfaces. 
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