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Abstract—General differential equations governing the shape of the film formed between two bubbles of
different radii and surface properties are derived using the lubrication approximation, The role of a soluble
surfactant with diffusion-controlled surfactant transfer onto the surface is analysed. Analytical solutions are
obtained for the limiting cases of small and large deformations of the bubbles® caps. Results of previous
investigators are also obtained under appropriate limiting conditions. The results are in qualitative

agreement with the available experimental data,

1. INFRODUCTION
The process of attachment of a solid particle to a
bubble is a very complicated one both from hydro-
dynamic and thermodynamic points of view. The
particles are usuvally carried along the stream lines and
can attach to the bubble only if the distance between
the stream line and the bubble surface is small enough
[1]. The attachment itself is, however, governed by the
hydrodynamic processes taking place in the liquid film
formed between the bubble and the particle: thinning,
rupture and subsequent expansion of the perimeter of
the three-phase contact line, Similar considerations
hold for the coalescence of two bubbles or droplets.
These processes are additionally influenced by the
disjoining pressure (sce ¢.g. [2-4]) in the thin film and
the surfactant properties and repartition. The correct
theoretical accounting of all these factors seems hardly
possible for the time being, therefore some reasonably
simplified models are needed. Such models can and
have been used in two extreme cases. When the fluid
particle (bubble or drop) is relatively far away from the
other interface it is usually only slightly deformed and
from the hydrodynamic point of view can be con-
sidered as being spherical. The problem for the
movement of a non-deformed rigid sphere toward a
plane surface was solved for the first time by Taylor
[5]. In the opposite case, when the particle is close to
the other interface, its cap is strongly deformed to the
point of becoming flat (if the particle is small enough).
A reasonable model for this situation is the plane-
paraliel film considered by Reynolds [6]. These models
have been used by a number of investigators to account

for the effect of the surface mobility on the film
thinning (see e.g. [7, 8]). At the same time they suffer
from a very important shortcoming, because of the
assumed non-deformability of the interfaces, the
normal stress boundary condition can be satisfied only
integrally rather than locally. This, along with the
experimental observation that in many systems the
deformation can be so strong that the curvature at the
cap of the particle can change sign and acquire a bell-
type shape, called dimple, has led many investigators to
use more refined treatments [9--17].

Most of the above treatments deal with systems with
specific geometry (e.g. bubble approaching a plane
solid surface) and pay little or no attention to the
surface mobility of the interfaces, On the other hand,
the only consistent way to check the ability of the
Taylor and Reynolds' models to account for the effects
of the surface mobility is to solve the more general
case—a system with deformable and tangentially
mobile surfaces and to compare the results which
the simplified models lead to under the same
circumstances.

Our aim will be now to formulate an approach as
general as possible, We shall do that for the system
shown in Fig, 1: two bubbles of different radii and
interfacial properties moving toward each other along
their axis of symmetry. This will allow us to obtain
from the general equations the results derived pre-
viously for some particular systems: symmetrical film
[11, 17] (between identical bubbles) or film between a
bubble or solid sphere and an infinite interface:
solid/liquid or fluid [10, 17-20].
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Fig. 1. Mutual approach, along the axis z, of two different
bubbles A and B of radii R4 andBRE, and surface tensions ¢
and 57,

A more general treatment and a review of thin film
dynamics in membrane systems is given elsewhere
[20].

The basic hydrodynamic equations and boundary
conditions will be formulated in lubrication approxi-
mation. We realize that in a limited number of
circumstances, this approximation may not be valid
[7,21]. However, our analysis is restricted to small
slowly moving bubbles where problems with the
validity of the lubrication approximation should not
arise,

In the present paper we will be concerned mostly
with diffusion limited surfactant transfer, which is
more frequently encountered with thin films [7]. In a
subsequent paper [22] a more general mechanism of
surfactant transfer will be considered but the treatment
will be restricted to plane-parallel films. In the next
section the basic equations and boundary conditions
are formulated. In Section 3, the diffusion and
Laplace’s equations are used to derive a general
equation allowing the calculation of the film shape and
the drag force, F. This equation should be able to
describe all stages of the film evolution. Similar,
though less general, equations have been used by other
authors for this purpose. However, we have some
doubts concerning the correctness of such an ap-
proach. In fact, the experimental observations show
[16,23,24] that at least with small bubbles (radii
below 1 mm) the dimple persists up to a certajn
thickness and then is pushed out of the film and
virtually a plane-parallel film forms. One gets the
impression that at this moment an instability appears.
No theoretical treatment based on the lubrication
approximation has ever predicted such an instability,
Therefore, we intend to apply our equations only to
two limiting cases: (i) large separations between the
two interfaces, when the deformations are small
{Section 4) and (ii) small separations, when the dimple
presumably has been already pushed out (Section 5). In
this way we will obtain asymptotic results which allow
in the former case to predict the initial deformation
and in the latter case lead to the conclusion that the
film is nearly plane-parallel. The results are discussed
in Section 6.
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The results should apply with good accuracy to
emulsion films (drops rather than bubbles) with sur.
factant soluble in the continuous phase because for this
system the liquid flow in the drops has virtually no
influence [25-27]. The behaviour of the film depends
on so many interacting effects that it is necessary to
make, at certain stages of the derivation, some ad-
ditional simplifications. Note that the range of validity
of the approximations used depends strongly on the
film thickness and the surfactant properties and both
can vary widely.

2. BASIC EQUATIONS AND BOUNDARY CONDITIONS

When the bubbles are close enough and the surfact-
ant concentration is not very low, the liquid flow is
governed by the lubrication theory equations.
Assuming that the flow is axisymmetric, we can write
these equations in the form:

ap b 4
L
ar dz2 "’ (1a)
dp
— =0, 1
pe 0 (1b)
av, i 10
VrVr+'a-“—-0, Vr—-r‘a_;“r (].C)

Here p is dynamic viscosity, p is pressure, V.and ¥V, are
velocity components (see Fig. 1). Equation (1) can be
integrated by using the boundary conditions

UMB atz= HAB,

oHA?
Vo=t

where ¢ denotes time and the superscript A, B means
that the respective equation is to be applied both to the
upper film surface, x = HA (r), and the lower surface, z
= —HB(r) (for the sake of brevity the notation z
= HAB will be used hereafter). From (1) and (2) we get

V.

il

(2a)

L UABOHAD at 7 = gAD

(2b)

z2 dp
V,~§;5+ Az+ B, (3a)
UA-UB HA—H® gp
= - — 3b
4 H 24 or (3b)
A__r7BgB HAhrD
B = UHA—~URH _ a_p’ (3¢)
H 2 or
oH H . 5 HJp
""a = Vr[? (U +u )“"—1—2:;5’—: ) (3(1)

where H(r) = HA4 H® is the local film thickness.
Equation (3d) is the general integral form of eq. (1).
The conditions under which it applies were discussed
in {17]. The surface velocity U* and U in (3d) can be
expressed through the flow parameters by using the
condition for continuity of the tangential component
of the stress tensor. A general form of this condition
was derived by Scriven [28]. For slow motion, axial
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symmetry and with lubrication approximation it reads:

+ EV,_DJ"'B
th e T

0
+ ug*r“——ar (VUMDY at 2= HAS,
)

where o is surface tension and i, denoting the sum of
the surface dilational and shear viscosities, will be
called for hereafter brevity surface viscosity. Other
forms of the tangential boundary condition were
derived and used in [29, 30].

In order to determine the dependence of o on r the
surfactant repartition has to be considered. We shall

follow basically Levich’s phenomenological procedure:

[31] which was recently given statistical-mechanical
background by Brenner and Leal [32-35]. Following
Levich we shall concern ourselves with the case of
small deviations of the surface tension g, the surfactant
adsorption, I', and the bulk concentration, c, from the
respective equilibrium values of a4, I'y and ¢,. Then
the condition for surfactant conservation at the inter-
faces will read:

FG.B v, UAe —*D?'BAI.FA'B =j£hB
at z = HMB, (5)

14 i d
A= (r ) = Ve
f rar(lar) V'ar’

D, is the surface diffusion coefficient and j, is the bulk
surfactant flux along the normals n*® to the film
surfaces,

When writing down eq. (5), two terms were
neglected: oI'/8t and UV I, We shall be considering in
this paper mostly the cases of regular drainage when all
points of the two surfaces are steadily moving toward
each other, although because of the deformation of the
surfaces, with different speeds, If such is the case all
quantities can be assumed to depend on time only
implicitly, via the thickness along the axis of symmetry,
h=H{, r=0). We call this a quasi-steady state
assumption. Then

where

or 1) R
= Vo i (T =T), 6
at oh h (To ) ©)
where
dh
=V=——, 7
V)=V @ )]

The order of magnitude of the second term is UV, I
~ U ([, —T)/R;, where R;is the radial length scale,
e.g. the film radius R, (sece Section 5). From the
continuity equation (1c) U ~ ¥VR;/h and the two
terms turn out to be of the same order of magnitude. It
was shown (see e.g. [7,20,36]) that usually the leading
term in eq, (5) is

D,A,I" ~ D,(To —T)/R%. (8)
Then from (6) and (8) one gets

oI’ DR
— /DAY ~ Pe—— 9
at/ s D,

bt

)
12

S

where Pe = Vh/D is Peclet number and D is bulk
diffusivity. The ratio D/D, ~ 0.1 [36] and R¥h* must
be at least 10? in order to use the lubrication theory.
Therefore, Peclet number must be smaller than 10~ 2in
order to neglect the terms 1"/t and UV _T". Although
Pe is usually even smaller, it is clear that under certain
circumstances, e.g. very low surfactant concentrations,
the present theory will fail. More detailed estimates of
the above and other approximations, for the case of a
plane-parallel film are quoted in [7].

The explicit expression for j, depends on the
mechanism with which the surfactant is transported
onto the surface. Since our present aim is to treat in
more detail the deformation of the film surfaces, we
must restrict ourselves with a single mechanism, the
diffusion-limited surfactant transfer (ie. slow
diffusion).

In this approximation it is assumed that there is no
hindrance to the adsorption of the surfactant mol-
ecules once they have reached the subsurface. If in
addition the reorientation of the adsorbed molecules is
very fast, both ¢ and I will depend only on the
subsurface concentration [37,38] ¢, = c(r,z = HMB)
and their relationship with ¢, will be the same as in
equilibrium. Then we can use

dahB el o
—-a":‘"=—é‘c%.“"”a“;, atz=H"'n (10)
AB
A TN = a,(ll? A.c at z=HME (11)
0

With small Peclet number the surfactant distribution
in the bulk ¢(r, z) is governed by the second Fick’s law:

¢
A +52—z = 0. (12)
In this way the bulk diffusion flux
) dc
jﬁ'ﬁ= *‘DW atz=HA'B (13)

and the other quantities in eqs (4) and (5), dependent
upon ¢ and T, can be calculated.

Another boundary condition which has to be used is
the condition for continuity of the normal component
of the stress tensor at the interfaces. Although this
condition is well known (see e.g. [28, 31, 39, 40]), its
application to thin films requires some additional
comments, In systems with curved interfaces the
lubrication theory of eqs (la)—(1c) are only valid in the
region where the local thickness [ (r, t) is much smaller
than the bubble radius R, (the bubble’s radii R4 and
RY) [41,42)]. Assuming that the bubble shape is
spherical, simple geometric considerations indicate
that H/Re- < 0.1 with r < 04 R, The radii of the
dimple or the plane-parallel film are usually less than
0.05 R [23]. Therefore eq. (1) will govern the liquid
flow in a fairly extensive region outside the film. The
main purpose of our calculations will usually be the
drag force which depends on the pressure gradient.
Since 8p/0r is proportional to H =2, only the region in
close proximity to the axis of symmetry gives noticeable
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contribution to the drag force. The above reasoning
allows the assumption that eq. (1)is still valid relatively
far away from the axis of symmetry, ie. in regions
where the flow does not influence the force balance and
the liquid could be considered as being quiescent. Thus
at large values of r(r— co) we can disregard any
deviation from the equilibrium. Moreover, we can
approximate the generatrix of the unperturbed inter-
face in this region with a parabola. Under these
conditions 2HAB/dr < 1 and the normal component
of the stress tensor reduces to the pressure p. The latter
should obey the following equations:

p"B"B—p = D‘S'BArHA’B, (14)
2048
pmplmp.Q'B—R,{’_B at r— co (15)
¢

where py and p4® are the pressures in the bulk liquid
and the bubbles. The latter equation could be written
also as

A HAB = 2/RAB at 5 o0, (16)
r C

To simplify the treatment, we have neglected in (14) the
contribution of the disjoining pressure. It becomes
sizable only with very thin films (< 500 A) [43]. In this
thickness range the film is either plane-parallel or
ruptures [23, 44]. In (14) o, stands for o, because we
have assumed that (64 —0)/6o < 1.

The force balance, leading to the drag force, F, reads:

Ré’u o
Fa 27tf (p—p)rdra 2nJ‘ (p —pprdr

0 0

g

[ca]

ar (17
where H* P is the equation of the unperturbed surface
at r — co. Equation (17) can be applied only in two
particular cases: (i) each of the bubbles experiences the
same force F pushing them against each other and (if)
one of them is immobile while the other is pushed by a
force F.

o]

3. DIFFUSION-LIMITED SURFACTANT FLUX IN
LUBRECATION APPROXIMATION

All the equations in Section 2 except eqs (12) and (13)
were formulated in lubrication approximation. The
use of eq. (12) in the form it stands is possible but
inconvenient. First of all, this would lead to com-
plicated calculations. Second, this procedure is ob-
viously not self-consistent since it involves additional
use of the lubrication approximation in the final
results. For example, in the case of a foam, plane-
parallel film of thickness / and radius R, expansion in
serics over #i/R <1 is needed [44]. These compli-
cations could be avoided by an appropriate formu-
lation of the ibrication approximation for the surfact-
ant bulk diffusion flux. For a plane-parallel film
between two identical bubbles (or drops) this was done
in [26] by representing e(r,z) as a series o(r, z)
= o+ M)+ () 22/2. 1t was also shown there
that whenever c(r, z) is not differentiated with respect
to z, the term with z2 should be disregarded. The same

reasoning will obviously apply to a film with de-
formable inte.faces between two different bubbles (or
drops) but in this case a term linear with respect to z
must be added. Therefore, we can assume the solution
of (12) to be of the form

2
e(r, 2) = o+ @) +c“)(r)z+c(2)(r)%. (18)
From (12) and (18) we get:
Ac= —c®,
Then, at z = HAB
de _ ABL(2) . 1) T gAB
= T H % = D HABA ¢ (19)

We now need to represent dc/dn in terms of the
concentration gradients de/dz and de/dr. Since in the
lubrication approximation dH/or < 1, from simple
geometric considerations we obtain

de de dc OHMB
= 4+ = _7 _
anhB (az )z=H“‘ ar ar 20)
From the identity
. A AB
v, A28 HA-”A,c+?££~Iim (21)
or ar  or
and (19) and (20) we finally get
de dc OHAMB
= .f... (1) — A!“A [P,
onAB = € H T or
= ic‘”—Vr(H""Bg%), (22)

which has to be used in (13).

Another approximation we shall use will be to
neglect the term with p in (4). With plane-parallel
foam and emulsion films the contribution of this term
to the velocity of thinning is of the order of u h/uR?2
[26,44]. Since R ~ 10"2cm the surface viscosity
contribution can be neglected with u, < 0.1 s.p. This
term is however very important in the theory of the
capillary waves [44,45] when the radial length scale
{the wavelength) could be of the order of 10~% cm.
Therefore, the present treatment will be valid mainly
with relatively thick films, when the wave motion is of
less importance.

With (3a)-(3c) and (10), eq. (4) acquircs the more
appropriate form:

Hap (Ur~UB 9B g¢
e A R (23)
2 o H deg Or
On the other hand, from (5), (11), (13)and (22) we have
arys
iy ysre —Dg‘»“_--—-ac‘; A c

= ~D[:t e® —Vr(H"'“—g-;)]. (24)

By writing eq. (24) separately for the upper and the
lower surfaces and summing up we can eliminate ¢,
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The result can be cast in the form V. {} =0 and
integrated over r. Since from symmetry considerations
atr =0, U” = U® = 0and d¢/dr = 0, the integration
constant has to be zero to avoid singularities at v = 0.
The final result, thus, reads:

) arg

S4+pB_2

roUA+Trjut— (D”‘ :
deq

de
+DH \-— =0,
¥ deg H) or
(25)

The concentration gradient dc/Or can be eliminated
from (23) and (25). Thus two linear algebraic equations
for U* and U® are obtained, whose solution is:

2+ (K*—KB)Tgt H?
UA’B= -;( B A) 9 B _?—p' (26)
(K + K ) (r0+r0) 2# or
with
dohB/oc ars c?l“B -1
KAB= 0 2| |4(D} D
Du + Ocg 0 /DH
27)
From (26) and (3d) we get the desired general
expression:
8H _ v. 1_%4+(K"-—K“)(F“—FA) H3 dp
a TO(KA—KB(T4+TD)  12uar |
(28)
For convenience we will now introduce the quantities
bMP = —3uD/T4" (Bad-"/0co) (29)
h{® = —6uD{P/T" (00§ /0TEF),  (30)

accounting for the bulk and surface diffusion effects
respectively, After some algebraic manipulations,
eq. (28) can be then written in the following form:

fg-_v [(1+T-+-1.;/H 112;‘2”] (31)
where
b= [4U4TBbAb® 4+ 3(08 —TH)(IEBP — T3 b))/
(Ca+TH T + T3, (32)
By = 20A0B (hABB 4 hBbM) /(TS +T8)
(CApA4-T8H%).  (33)

when h,/H < 1-+b, i.e. when the surface diffusion
effects can be disregarded, eq. (31) reduces to:

") A
f:,{{ m}f*-rV ]ﬂap
ot 12 or

With two tangentially immobile surfaces one must set
in (34) b = 0. This result could have been derived {rom
(3d) by setting there U* = U = (. This case was first
considered by Reynolds. If the two surfaces have the
same nature (e.g. if they were both liquid/air), eq. (31)
is still valid with i = b and k, = h,. (We have dropped
the superscripts, which are the same [or both surfaces.)
Note, however, that the radii of the bubbles are not
assumed to be equal in this case.

When one of the surfaces (e.g. the lower one) is
solid/liquid, one usually assumes that it is tangentially

(34)

immobile and the surfactant flux to it is zero, ie,

UB=0 (35a)
oe
— =, 35b
(6” ); — 0 (338)
From (22) we have for this case
(= —y (Hﬂa‘ ) (36)
aor

Then the square brackets in the right-hand side of (24)
(written for the upper surface, z = H*) are trans-
formed as follows:

de de de
-V, H? HA = | = — .
V( 3) V( m) V(HJ

Instead of (24) we then obtain for the upper surface the
following equation (dropping the superscript A):

r,V.U-D20A ¢ = DV (Ha‘).

P ey or

The final result of the derlvatlon for wetting films

reads;
OH 3 H? dp
v (1o 2 37
ot r|:( K""ﬂ,-—l)lZ,u ﬁril 37

where [cf. 27)]:

day/dcg ol -1
W e .
Kv=—g=? 1Dy 5.0 ) [ DH

This result could have been obtained from (28) by
assuming

r'®=0 and KP=KA-2/T} (38)

which would ensure U® =0. We were not able,
however, to find any physical basis {or this formal
transition. That is why the case of wetting films will be
treated hereafter separatcly. In terms of the notations
defined by eqs (29) and (30), eq. (37) reads:

OH b+ h/2H H? c'?p:i ]
"52"—V*[(1+1+b/3+hs/ou>" ol Y

12u dr
Thus far we have been concerned only with the
surface mobility terms in eq. (3d). As already pointed
out, beause of (1b), the pressure gradient dp/0r can be
expressed by eq. (14). At this point, a new variable, H*
or H® will appear in eq. (31)and/or (39). This variable
can be eliminated via the relationship

208 2(70
BA HB - _2“

olhA, HA (40)

using eqs (14) and (195), Equation (40) is easily in-
tegrated over r and the result can be put in the form

H* = H —H"
Fo _ i 1 \e?
=gt (““R - ;g‘ie;&)
+Zopm _Jopm (41
0 0
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where
(42)

Equation (41) along with eq. (14) (written for the upper
surface z = H*) and (31) leads finally to:

12 0H h) 5 |9 }
i el —AH . (43
e v{[(1+b+ﬂ e | Laul @y

For wetting films one of the surface tensions, e.g. a§
can be assumed infinitely large, so that ¢, = 0§ = a,.
Then egs (41) and (39) yield:

b+h/2H

12u0H ) 3]
- | H
P V’{[( Y+ h6H
P
X-a—r—ArH}

The rest of the present paper is devoted to the solution
of egs (43) and (44).

The boundary conditions {16) and the force balance
(17) are transformed in a similar way. Let us write the
equation of the unperturbed local thickness H, as

~ B
5o = ag0/(0d +05)

(44)

H,=HA+HS=h, +r2/2R, (45)

where N
| R.= RZRJ/(R¢+RY) (46)
and h, = H_, (r = 0) is the distance that would exist

between the caps of the two bubbles if they were
immobile, A more convenient form of (16) will then be

AH=2/R, atr— o @7)
and the force balance becomes
O(H _ ~ H ®
F/2nd, == l:;‘_(_&mlf_)] (48)
ar 0

4. ONSET OF DEFORMATION AND VELOCITY OF
MUTUAL APPROACH OF TWO DIFFERENT
BUBBLES

At large separations the hydrodynamic interaction
between the two surfacés is weak and the deviation
from the spherical shape is small. As a result, in the
framework of the lubrication approximation the sol-
ution can be written as H = H _+ H,, where H, is the
shape perturbation caused by the flow.

It is convenient at this stage to integrate eq. (43) over
r and to write it in the form

el e [ e
¥ a (1+b+h THY ), Bt
(49)

where we have used the boundary cendition (47) and
have introduced the variable

x=r?/2R,, (50)

Note that the left-hand side of (49) includes only the
perturbation H | and the right-hand side includes the
total (local) thickness H » H,. Therefore, eq. (49) can
be solved by an iteration procedure, which consists of
replacing in the right-hand side H by H,, from eq. (45),

One thus obtains:

8H, 3uv R?2 X _)
=2 (1+—+d
xax thsd [( +hm+

xln(1+ dhey
he +x

where the quantity
d=h/h,(l+5) (52)

accounts for the diffusion effects. Here V_ =
—dh,, /dt is the velocity of thinning of the unde-
formed parts of the film. Equation (51) along with the
force balance (48) leads to the final expression for the
velocity of thinning, V,:

Fh, 1 7t

This equation has two limiti_ng forms: (1) strong effect
of the surface diffusion, i.e. d » 1 or alternatively h_ /(1
+b) < h. Then (53) reduces to:

V.= Fh/12npR3(Ind — 1)

)—(1+¢T)1n(1+3)], (51)

(54)

and (2) in the opposite case, d < 1,i.e. weak effect of the
surface diffusion, one obtains;

(L+B+7,/3h,). (55)

* = 8n R"
Equation (51) could in principle be integrated one
more time over x to give the film shape H. This would
lead however to untractable results which would be,
moreover, of little interest, Indeed, at large separations
the effect of the surface diffusion can be hardly very
strong, 5o that only the case d < 1is of real importance.
In the latter case, (51) simplifies to [see also (55)7:

ax ——47‘550 (hm+x)l: —E(hq,+x)], (0)

which upon integration, leads to

F l:ln(l +i)+ A :I

4, h 3(h, +x)
(57)

Here we have used the boundary condition H = / at
x =0 and have neglected the term with 7% (Note
that h 2 hy).

Analogous treatment of eq. (44) leads to the follow-
ing results:

OH,  3uV,R? [9x
Tox T 160,34 4bYh_d?

H=h4x-

hy+x+dh,,
I]CD }1 [24] + X

ho+x+dh,,
the+x)(1+d)

d?(3+4b)xh,, J
2hp+x) |

2Fh 9% 1
V= 24| (14—
- 3n#R§{ " [( +d1)

x 1n(1+d1)—1:|}*1,

+9(1 +d;) In

(58)

(59}
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where
2h,
4= G, 0
In the limit d; > 1, one has:
2Fh 9h
= e l1-—= . 1
v, 37:;:115( B lnd,) (61)

In the other limiting case, d, < 1, egs (58) and (59) lead
fo.

ax B —477:0-() (hr.o + X)

OH F 1 [ 3 3d,h,, :l
43+ by (h,, + x)
(62)

Fh, (3+4b) 3d,
_ Fhe 63
Vo = GuRE B+ b) [1+4(3+b)} (63)

F X
[ln (1 -+ ———) -+
7'“7‘() hm

5, HIGHLY DEFORMED BUBBLES AT SMALL
THICKNESSES

The method used in the previous section obviously
cannot be applied when the two bubbles are close to
each other and their caps are strongly deformed. In this
case the behaviour of the system can be rather
complicated. As it was already pointed out, in many
cases dimples form (very often of irregular shape) and
persist until the film ruptures or thinning stops.
However, il the bubbles are small and the surface
tension not very low, at thicknesses of the order of
1000 A, the dimple (if there was any) disappears and
the central part of the film has an (almost) uniform
thickness. Our purpose will be now to investigate this
particular case. It was treated in [17] for films with
tangentially immobile surfaces. Although the calcu-
lations for the system under considerations in the
present paper are much more complicated, the method
used is essentially the same as the one used in [17].
Therefore, only outlines of the method and some
important equations will be given in the present
section.

In this case the shape of the bubbles exhibits two
distinct regions: near the axis of symmetry, the caps are
flat, whereas far away, the bubbles are practically
spherical. We will try now to construct an inter-
polation formula, which has correct asymptotic be
haviour at small and large values, (In the lubrication
approximation the laiter case corresponds to r — c0.)
Let the dimensionless variable y be related to r by the
following expression:

y=1+xrr?

3d, h
H"——“] . 1o .
X =g 4(3+b)(hm+x)]
(64)

(65)
To simplify the treatment we also use the quasi-steady
assumption (see Section 1) which allows us to write:

o0H dHdh _  0H

Bt ok dt E

The boundary conditions at r =0 in the present

(66)

sections are:

H=h {67a)
dH/dr =0 (67b)

0
Em (A H) =0, (67¢c)

Equation (47) applies at r — oo and the force balance in
the form of eq. (48) can be used,
With eqgs (65) and (66), eq. (43) takes the form

alik'(y—-l)%g-i-x}l’:l

2

I PN )

dH
X [(y—l);:ﬂ}-]}, (68)

o = 3uV/45,Kk*

where
(69)

and the primes indicate differentiation with respect to
h. At large values of r, i.e. y — o0, we seek a solution of
(68) in the form

H = y/2kR, — (F/4nd,) Iny +ag+a,y~ 1 (70)

The coefficient before In y in the last equation is chosen
5o that the force balance (48) is automatically satisfied.
The undetermined coefficients ¢, and a, are functions
ol h. A relationship between ag and ¢, is obtained by
substituting (70) in (68) and letting y — oo. The result
is:

4x® R3a [k2ay — /2R — Lick'] = (L4 B) (L —ay),
(71)
where

L = F/4n&,. (72)

In the region xr? < 1, it is more convenient to use
directly eq. (43) in which eq. (66) has to be substituted
for @H/dt. The thickness H can then be written as a
power series of r, which satisfies the boundary con-
ditions (67):

H = h+dy* +d ot +dgr®. (73)

The substitution of (73} in (43), alter equating the
coefficients before the equal powers of r, yields

a?ic® = 4d, [ (1 +B)h® + hh?],
acd’y = 8[3(1 + BYh? + 2F ] dd,
o+ 36dg [ (L + D)+ Rgh?].  (74)

Equation (70) can be written in the form of (73) by
expanding Iny and y~! in power series of xr? By
equating this expansion to (73) we get four relation-
ships between the coeflicients in (70) and (73). Those
are:

h=(2kR)™ +ag+a,

dy = 2R,) "' —kla, + L)
d4 = (al + L/Z)Kz

dg = —(a, + L/3)x>. (75)
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After some algebraic manipulations, the set of
equations (71), (74) and (75) reduces to:

ke = 2[ (1 + B+ hh] (2a, + L),
8Kk2h* RZ(L+2a,)[{(1 +B)h+h ] [x —ra| — Lr']
= (14 b) (L —ay),

(76)

(77)

2L+2a,)[3(1 +B)h +2Hs][ Lo+ al)J

2R,
+2h(L+2a)[ (1 +b)h+ k][ LK + a,k' +a) k]
=6xh[ (1+b)h+h ] [L+3a,] (78)

The group F/4ng, = L in (70) has dimension of
length and is, therefore, the natural length scale for the
process under consideration. For a particle moved by
buoyancy force it becomes L = R2Apg/3G, where g is
the gravitational acceleration and Ap is the density
difference between the particle and the continuous
phase. For a bubble of radius 0.1 cm and a surface
tension 30 dynecm ™!, L is of the order of 1072 cm, i.e.
it is much larger than any thickness in the system
considered here. Therefore, we can introduce the
dimensionless quantities:

h=h/L; a, =a,/L; &k=xLR, (79)

and seek a solution ofeqs (77)and (78) by expanding d,
and & in power series of /i

ﬁl == A0+A1’;+ e ey
R=1ro+wh+ .... (80)
The result for the coefficients in (80)is A, = 1,4, =0,
Ko =1/2, k; = 1/4, etc.
Bysubstituting (80) in (70) and (76), one gets the final
results for H(r, h)and V [see also (69)]. If one neglects
all terms of the order of h, they read:

H=h+x-L1n(1+-zi%)— xx (81)
2 -
(1+2L)
y o "% (L+b+h/h) 82)
= 3uR2L s/ )

Similar calculations for wetting films, based on eq.
(44) lead to:

H=h—+—x—Lln(1+—x— _— @’
2L 54 =
2L
ooh® 3+4b+2h,
- - (84)
JuRZL3+ b+ b2k

6. DISCUSSION

One of the purposes of the present paper was to
derive differential equations governing the shape of the
film formed between two bubbles with allowance made
for the role of a soluble surfactant with diffusion
controlled surfactant transfer onto the surface. The
equations so obtained are (43) and (44). The former
equation refers to the case of two fluid interfaces.

Neither the bubbles’ radii nor the nature of the two
interfaces are assumed to be the same, Indeed, the
effective surface tension @, [eq. (42)], bubble radius R,
[eq. (46)], the bulk and surface diffusion factors b
[eq. (32)]and F,[eq. (33)] are represented through the
respective quantities for each surface. By using gmtablc
values, one can obtain various limiting cases of interest,
e.g. mutual approach of two identical bubbles A u.nd B
(R* = RE, o4 = o8, etc), a bubble A approaching a
flat fluid interface (RB = o), ete,, eq. (44) refers to the
case of a fluid interface approaching a solid/liquid
interface, the so-called wetting film. In this case the two
particles A and B can have different radii ol’curvatm:e,
R2and R?, but the surface quantitics oy, b and h, refer
only to the fluid surface,

The validity of egs (43) and (44) is restricted by
several approximations formulated during their deri-
vation. The most important is the lubrication approxi-
mation. It restricts the solution to the case of small
bubbles so that inertial effects can be neglected (see
Section 1). The case of films with two (luid interlaces
requires the presence of small amounts of surfactants
to decrease the surface mobility. (The mutual ap-
proach of two bubbles in pure liquids was considered
in [46-48].) If these two conditions are met, eqs (43)
and (44) can be used as a basis for numerical investiga-
tion of the process.

We, however, attempted analytical solutions lor the
limiting cases of small and large deformation of the
bubbles’ caps, which allowed us to derive relatively
simple expressions. In spite of some additional limi-
tation, they lead to some intleresting results, which we
will discuss in the rest of thiy section. Most of the
discussion will be centred around films with two Nuid
interfaces. The same effects are observed with wetting
films, but due to the rigidity of the solid sur{ace, which
prevents the fluid from reaching high velocities, the
effects are less pronounced. The veader interested in
wetting films should refer to the respective equations
derived in Sections 4 and 5.

The range of validity of the iteration procedure we
used in Section 4 to solve eq. (49) will obviously
depend both on the separation between the two
bubbles and the distance from the axis of symmetry.
Since we assumed that the perturbation H,(= H
—H ) of the local distance between the two surfaces is
small, the larger the distance, h, between the caps of the
bubbles, the smaller is their deformation and the better
is the validity of our results. Similarly, the larger is »,
the better eq. (51) describes the film shape. Since the
general equations with the dilfusion terms, o, are not
amenable to simple interpretation, we will illustrate
this point for the case of a film with tangentially
immobile surfaces. The respective equations are ob-
tained by setting d = 0. As already pointed out many
experimental observations reveal that when the two
bubbles are close enough the curvature at their caps,
Le. the derivative 2*H*"/dr? can change sign and a
dimple forms. The situation is mote complicated when
the two bubbles have different radii. Since experimen-
tally usually the thickness of the film is recorded, then
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the dimple formation can be assumed to occur when
D*H /dr? = 0 at r = 0, though the surface of one of the
bubbles may be convex, The radius of the dimple, i.e.
the distance ry, at which the thickness H has a
minimum, is determined by the condition 8H/dr = 0.
In this way from (57), with d = 0, one obtains

h = F/dng, = L (85)
FR, h
2 Dk .
"1”21(:00 (1 7 ), (86)

where /i, is the value of i, at which the dimple appears.
With /1, < h,eq. (86) leads to the final value, R, of the
dimple radius (see Appendix I). According to (85)

IR,

R}= (87)

2nd,
The latter equation, first published in [49], is the
general expression for the radius of contact between
two bubbles. The following particular case are of
importance (Fig. 2): (1) R,/&, = R,/o,, ie. R2
= PR /2ra,. This case is realized in Systems la
(bubble-non-deformable plane surface), 1b (solid
sphere with radius R, plane deformable surface
liquid/gas with surface tension o) and lc (two ident-
ical bubbles), (2) R./d, = 2R /oy, Le. R2= FR,/na,
(bubble --plane deformable surfaces liquid/gas both
with surface tension o) and (3) R,/6, = R,/20,, ie.
RZ= FR,/4no, (solid sphere bubble with surface
tension o, both with equal radii). The equations for R,
for System la has been previously derived by
Derjaguin and Kussakov {2]; for System 1b by Allan
et al. [24]; for le, by Princen [50] and Lee and
Hodgson [51] and System 2, by Chappelear [52]. The
expression for R, for System 3 has not been derived
previously to our knowledge.

The only reported experiments more or less suitable
for verification of cqs (85) and (86) are those of
MacKay and Mason [53]. These authors have carried
out measurements with very small bubbles and have
recorded approximately the thickness A, of dimple
formation and the radius ry. They have shown that ris
close to but smaller than the equilibrium radius of
~contact R, and that it enlarges with the thinning of the
film. These observations agree with our formula (86),

The only parameter MacKay and Mason have

ﬁw
- 2Ry =/ Liquid

LR
W%\\lﬁaa

Llquid
Solid

Solid
System la Ib

Gas

TR

<2 Liquid Llquld
Gas 2R,

Gas
System 2 System 3

Fig. 2. Equilibrium contact between particles with gas/liquid
or solid/liquid interfaces,

[HHATt I EA)

varied (in very narrow limits) is the bubble radius, R,.
In Fig. 3 their experimental data for the thickness of
dimple formation, h;, are plotted vs R,. The slope,
dinh,/dIn R, is very close to its theoretical value 3
[see eq. (85), where F ~ R?]. Despite this qualitative
correct behaviour of our result, one must note that the
quantitative agreement between theory and exper-
iment is very poor—the theoretical values are several
times higher than the experimental ones. One possible
reason for this discrepancy could be due to the high
velocity of motion of the bubble at these thicknesses.
The latter could have resulted in a delay in the onset of
the dimple formation. A much more probable expla-
nation, however, is the fact that the theory can not be
applied at thicknesses where the dimple forms. This
conclusion corroborates the discussion in the begin-
ning of the present section on the range of validity of
our results, From the same viewpoint it is clear why the
results for the dimple radius should be in much better
agreement with the experiment. Indeed, the dimple
radius lies in the region where the bubble deformation
is very slight. That is why it should not be surprising
that the obviously incorrect limiting conditions b, — 0
in (86) leads to the correct expression (87) for R..

It is possible to derive from (57) relatively simple
analogs of eqs (85) and (86) for the case < 1. The
results read:

B = L(l w-ff), (88a)
3
FR, 2dh, h
'2-= o 1__ o tm , b
4 27:30[ 3L L ] (885)

1t is not possible in (88b) to take the limit 1, — 0, since
at that limit d ~ oo, which contradicts the assumption
made in deriving (57). The second term in the square
brackets in (88a) will decrease the values of the
thickness of dimple formation, f,, as compared with
those calculated rom (85) and will bring the theory in
somewhat closer agreement with the results of
MacKay and Mason. However, at thicknesses of the

4.30|—

410~

—log 5,

390 il |
10 1.20 1.30

~log A,

Fig. 3. Comparison between experimental dala (@) and

analysis of the film thickness at the onset of dimple [ormation,

h, versus bubble radius, R, Data were oblained from
Ref, [54].
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order of 10~% cm the diffusion term can be bardly big
enough to account for the whole discrepancy between
theory and experiment,

Another indirect experimental check of the present
theory is the fact that it leads (see Appendix II) to the
experimentally observed [54] dependence of the
dimple radius, r4, on the time, ¢, elapsed since the
moment of dimple formation:

rg= ft'2 (89)
For the case of a rising bubble
F

T on J3G.R,

Unfortunately, no quantitative comparison with the
experimental results of Sagert and Quinn [54] is
possible because their experiments were not done with
rising bubbles. If, however, the driving force in their
experiments had been kept constant (which is prob-
able) there is no reason to doubt that the same
functionality of ry with ¢, i.e. eq. (89), will be observed
in experiments with rising bubbles. We are not aware
of similar experimental data.

Equation (53), as well as its simplified forms (54) and
(53), are generalizations of the familiar Taylor’s for-
mula for the velocity, Vr, at which a solid sphere of
radius R, is approaching a rigid flat surface:

Vo= Fh,/6nuR2 (90)
The latter equation follows from (53) or (55) by setting
hy=b = 0and R? - o0. Eqlations (53)~(55) however
account notonly for the different curvatures of the two
surfaces and for their surface mobilities (through b and
h,), but are also valid for slightly deformed spheres.
The latter is obvious from the way they were derived in
Section 4.

The general effect of the diffusion terms, which
account for the surface mobility, is to increase the
velocity of thinning ¥, and the deformability of the
surfaces. The latter is accounted for by the pertur-
bation terms. Due to the increasing distance between
the two surfaces with r, the effect of the surface
diffusion on the velocity of thinning, however, is less
pronounced than for two bubbles with strongly de-
formed caps (c¢f. e.g. eq. (55) with eq. (91) below].

A peculiarity of the equations, describing the film
profile, that is worth noting, is the fact that the bulk
and surface diffusion terms are coupled—they enter as
a group d = ki /h,(1+b). Only at very large thick-
nesses, when d—0, the surface diffusivity can be
disregarded. In this case ki in (55) can be put equal to
zero, From the respective eq. (57) or H it follows that
the film profile will not depend then on the bulk
diffusion, ie, it will be the same as for a film with
tangentially immobile surfaces, The latter conclusion
was already reached in [11] for the case of two
identical bubbles with bulk diffusion-controlled sur-
factant transfer. The equations for V¥, H, k; and ry,
derived in [11] can be obtained from the respective
equations of the present paper by setting h, =0,

RY =RE and b* = b®. The case of a bubble with
tangentially immobile surface (U* = 0) approaching a
solid plane, considered in [10] corresponds to a
wetting film from the present paper with R® — co and
hy = b = 0. Since the derivation in [10] and [11] was
carried out by the method of expansion in terms of the
small parameter F/2mo,R, the coincidence of the
results is an additional argument in favour of the
correctness of the used perturbation procedures.

A procedure similar to the one used in the present
paper was employed by Dukhin et al. [18] for the
particular case of a solid sphere approaching a flat
liguid surface with surfactant obeying Henry’s adsorp-
tion isotherm, ie. I'y/c, = constant. Their result for
V., coincides with our eq. (59) for small concentrations,
i.e. when dry/d¢c, can be approximated by I'y/c,. We
found however a difference in the numerical coeflicient
before the term with h/h, . We obtain its value equal
as 9, and they obtain 9/2.

In the case of strongly deformed bubbles (Section 5),
the results deserving most attention are eq. (82), giving
the velocity of thinning of a film with fluid interfaces
and eq. (84) for the velocity of thinning of wetting
films, With b= h, = 0 and R? -+ oo (ie. R, = R?) it
coincides with the equation previously derived in [17]
for a deformable bubble approaching a solid plane
surface, We will only briefly summarize the most
important conclusions already reached to in Ref. [17].
The analysis of eq. (81) reveals that the function H(r)
exhibits only one extremum-—a minimum at r = 0, At
the same time in a rather extensive region, whose
radius is of the order of k7' /2, the film is almost plane-
parallel. This means that this whole central part thins
with the same velocity, ¥V, given by eq. (82). A rather
unusual result, already pointed out by Hartland [12] is
that Vis inversely proportional to the driving lorce, F,
through L. This apparent contradiction is due to the
fact that the film radius, R,, according to (87) also
depends on F. If one eliminates R, between (82) and
(87), one obtains:

V=V,(1+b+h/h) 1)
where
Fh?
0= SR 92)

is the velocity of thinning of a deformable film with
tangentially immobile surfaces, Equation (92) is a
generalization of eq. (28) from [17] for the case of
different bubbles. As already discussed in [17], this
equation differs only with a numerical coefficient from
the well known formula of Reynolds for the velocity of
thinning, Vy,, of a film between two circular rigid discs
of radius R,. More specifically, ¥, =3 V.. Since
experimentally the film radius is determined with a
precision not better than 109 [23], one is unable to
conclude that V, coincides practically with Fy,.
Another important feature of eq. (92) is the fact that
Vo is proportional to h® which is in agreement with the
experimental findings of many authors (see c.g. [23]).
One must point out that theories, predicting thin films
with dimples, lead to different functionality of ¥, on
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(seee.g.[9, 11]). All the above arguments strongly bear
out the applicability of the model of the plane-parallel
film. This conclusion, which was already reached in
[17],is also corroborated by the results of Buevich and
Lipkina [13], Jones and Wilson [15] and Barber and
Hartland [8]. At the same time one must keep in mind
that our theory and, therefore, the validity of the above
conclusion is restricted to small bubbles, namely for
bubbles radii satisfying the condition [17]:

R. F 12
TL = = « 1,
Rc 27!0'0Rc

When the system consists of two bubbles of different
radii, e.g. bubble approaching a flat Aluid interface, the
two film surfaces will still be parallel but no longer
plane. Since our theory is wvalid only when
8H*B/or < 1, the results can be used only for small
film curvature; when the curvature is high the ap-
proach developed by Hartland [ 127 for a spherical film
is more appropriate, The above results can be used also
for films formed in small capillary tubes but then the
driving force has to be expressed through the capillary
pressure of the miniscus (see [17]).

In a series of previous works (see e.g. [7] and refs
therein), it was shown that the velocity of thinning, ¥,
of a foam (symmetric) plane-parallel film with dif-
fusion controlled surfactant transfer is:

V= Vg (1+b+N/h) (94)

The latter equation is in fact identical with eq. (91)

and describes the same dependence of the velocity of

thinning of a film with deformable surfaces on the
surfactant properties and concentration.

Similar results hold for a wetting film. By climinat-

ing R, between (84) and (87), one obtains

3+4b+2h,

(93)

(95)

where V is given again by (92). For a plane-parallel
wetting film the respective equation reads [7]:
y g 32
34+b+h/2h
which is practically the same as eq. (95). The reader is
referred to [7] for detailed discussion of the role of the
bulk and surface diffusion on the thinning of foam and
wetting films.

Equations (81) and (83) reveal that the film shape at
small thicknesses does not depend on kinetic par-
ameters such as liquid viscosity. The same is true at
large separations when the effect of the surface diffu-
sion can be neglected (see above). Princen [50] reached
intutitively the same conclusion. It is no longer true,
however, at large separations and significant surface
diffusion (d & 1) when the film surfaces have larger
surface mobility and can undergo fast deformations,
Then the film shape depends, through J, on the
viscosity and the Marangoni-Gibbs effect. Yet, the
effect of the liquid viscosity will probably still be very
small if one can assume that the product uD,, similar to
uD, does not depend on L.

(96)
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NOTATION
ag, @y coefficients in the expansion at y — oo,
eq. (70)
dq % non-dimensional coefficient, eq. (79)
A, A integration constant, eq. (3b); super-
script for the surface of bubble A
Ag, Ay, coefficients in the expansion of 4, at
small thicknesses, eq. (80)
pAB —3uD/T4 B @csP /3c)®), bulk dif-

fusion exchange coefficient, eq. (29)
b average bulk diffusion exchange coef-
ficient, defined by eq. (32)

B, B integration constant, eq. (3c); super-
script for the surface of bubble B

¢ bulk surfactant concentration

¢y equilibrium bulk sorfactant concen-
tration

¢l®, M) o@  coefficients in the expansion of c(r, z),
eq. (18)

g subsurface concentration

d /by, (L+B), eq. (52)

d, 2hy/h(3 + 4b), eq. (60)

dyy dy, de coefficients in the expansion of H at
small r, eq. (73)

D bulk diffusion coeflicient

DB surface diffusion coefficients for bub-
bles A and B

F driving force

h H(r =0), for deformed bubbles or
thickness of plane-parallel film

hg, the distance at r = ( between the two

. undeformed bubbles

h h/L

hy thickness at which the curvature
changes its sign, eq. (85)

h{? —~6uDMB/TEP (@0l B/0TH"),  eq.
(30)

h, quantity defined by eq. (33)

H HA 4+ H®, focal film thickness

H, ho +r*/2R,, parabola, describing the
local distance between the nonde-
formed bubble surfaces

Jn bulk surfactant flux to the film surface,
cq. (5) _

KAB defined by eq. (27)

KY defined by eq. (37)
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L F/dno,

n*B normal to the bubble surfaces

P hydrodynamic pressure

pAB pressure in the bubbles A and B

P, equilibrium pressure in the bulk liquid

Pe Vh/D, Peclet number

r radial coordinate

ry dimple radius, eq. (86)

R,, R, film radius, eq. (87)

RAB bubble radii

R, RIRZ/(RE+RD), eq. (46)

R; radial length scale

Rf radius of curvature of the film, Figs Al
and A2

t time

UAR surface velocities

14 ~0H /8, local velocity of thinning

V(0) —dh/dt, velocity of thinning at r = 0

Ve —dh_/dt, rate of approach of the
nondeformed surfaces

U, U, radial and axial velocity components

x r*/2R.,

y 1+ xr? dimensionless variable, eq. (65)

z axial coordinate

Greek letters

® 3uV/4g,x3, eq. (69)

3 F
27 \f3ud,R,

r surface concentration

Ty equilibrium surface concentration

K (x~'7% ~ Ry), eq. (65)

& xL/R, eq. (79)

Kos Ky coefficients in the expansion of &, eq.
(79)

i bulk viscosity

Iin surface viscosity equal to the sum of he
dilational and shear viscosities

o surface tension

opB equilibrium surface tension of bubbles
A and B, respectively

7 obaB/(ah +aB), eq. (42)
19

Vr ;b?r
18 @ a

A —r=—|=V,—

d ror (" ar) "o
Ap density difference
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APPENDIX 1
ON THE FORCE BALANCE OF SYSTEMS INVOLVING
SMALL BUBBLES

Equation (87) for the “equilibrium™ radius of the line of
contact between the two bubbles was oblained as a limiting
case ol eq. (86) for h,, <& L. We arc presenling here a
“guasistatic™ derivation of eq. (87) which reveals better its
muain features and limitations,

Let us assume that the upper bubble *A™ is immobile and
the lower is pushed upward by the buoyancy force, F. We
assume nlso that the film is thick enough so that the only role
of the second (upper) surface is to change the pressure inside
the film to a value, p', different {rom the bulk pressure, p'.
Note that the difference between p' and pl gan be due both to
static and hydrodynamic interactions between the two sur-
faces. In the latter case, the thinning process must be slow
enough. Let the average pressure in the Rim be p'. The force
balance for the bubble “B" in vertical direction will then read

wR2(p"—pl) = F, (A1)

The static {thermodynamic) interactions, if there are uny, are
supposed to be so small that the two film surfaces (which are
assumed also parallel) have the same surface tensions as the
respective bubbles, o and ¢, Then from Laplace’s equation
applicd to the ilm and bubble A surfaces, one oblains

. | i
W Plae 200 e o 1,
Pre Pl 20y (R{} R")

where RYis the radiug of curvature of the film, Equation (A.2)
will be true i the bubble is small cnough to be spherical. On
the other hand, the difference in gas pressure between the two
bubbles can be written as

(A2)

A il A oD
(72 o ﬂ'n "|“ UU
pA..pb ..o (..,i’, . ) L B (A.3)
L RATRD Rl
which leads, after some algebra, to
L1 ol ( 11 )
RATRET gf v oB\RATRY *4

Thus egs (A.1), (A.2) and (A.4), along with (42) and (46) yield
eq. (R6), we seek;

R2 = I' R,/2n#,. (A.5)
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The situation is quite different when the film is so thin that
there is a strong thermodynamic interaction between the two
film surfaces, In this case the film can be considered as a
membrane with film tension y % ¢4 + a3 ?see Fig, A.2)and eq,
(A.3) can be modified by substituting y' for a8 +¢5 in its
right-hand side. Since the bubbles are again spherical, the
following geometrical relations hold:

R, = R'sin0=RAsin0* = RBsin 0B (A.6)
Equations (A.6) and the modified eq. (A.3) then yield
p'sin0 = o sin 64 — g P sin 4B (A7)

which is nothing but the famjliar Newmann-Young equation
taken in vertical direction. This is a rigorous result for the case
of spherical bubbles, In other words, when the bubbles are
assumed spherical, i.c. when eqs (A.6) and the modified
eq. (A.3) are used, their equilibrium is determined solely by
surftace forces and there can be no contribution of the buoyancy
Jorce to the force balance. This system is similar to a floating
lens, considered by Princen [55].

The above considerations should be true for any system
conlaining small (spherical) bubbles. In the case of a bubble
attached to a fluid flat surface {i.e. RE — o0) one is bound to
sel in (A7) 0P=0 and the force balance becomes p’
= ¢ sin 04, For cxample, Princen in his analysis of the
cquilibrium of very small bubbles and lenses [55] always
assumed the planar surface undeformed.

Therefore, it does nol seem correct 1o assume some
elevation of the contact linc above the level of the bulk liquid
(as shown in Fig. A.3) and to include the buoyancy force in
the force balance on the one hand and ai the same time to
consider the lower part of the bubble as part of a sphere. In
other words, it is not correet to apply to it relationships of the
kind given by eqs (A.2), (A.3) and (A.6).

Fig AL

Fig, A.2.

Fig. A.3.
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APPENDIX II

ON THE RATE OF EXPANSION OF THE RADIUS OF
THE DIMPLE

Equation {89) can be derived in several ways, but the
stmplest seems to be to use an iteration precedure similar to
that already used throughout this paper. Since the dimple
forms ata thickness i, = L [eq. (85)] and increases its radius
very fast one can assume that the latter process takes place ina
thickness range Ah< L. By setting h, = L —Ah, eq. (55)

{(with & = kg = 0) can be written as follows

dh, dAh FL
Vm TE e e TS e Qe
de dt  6nuR?
Thus from (A.8) and eq. (86) upon integration (with Ah = Qat -
t = 0), one obtains

(A.8)

FZ

2o
"d= o

e R TR A-
12E R, t (A.9)

which is eq. (89).



