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Generalized Laplacc equations. nccounCng for the variations or the surracc knsion and the disjoining pressure in the 

transition region. are derived. They are used 10 obtain inlegral expressions for the line and Iransversal tensions. 

1. Conditions for equilibrium of the transition region 

We consider a symmetrical planar thin liquid film 
in the absence of external fields, encircled by a capil- 
l&-y meniscus of the same liquid (fig. 1). Close to the 
axis of symmetry 02 the film has constant thickness h 
(defined as the distance between the two surfaces of 
tension each of them with film surface tension of>. 

Far from Oz (in the meniscus) the disjoining pressure 
3 = 0, the surface tension of the meniscus is a con- 
stant, 2, and the generatix of the surface Z(X) sati- 
fies the Laplace equation [ 11. In the intermediate re- 
gion the two surfaces interact and since the interaction 
energy depends on the distance between them, the 
surface tension in this region u(x) changes gradually 
from d to Op. The disjoining pressure IT is also a fimc- 
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Fig 1. The transition between a thin liquid film and the capillary meniscus is smooth The solid and dashed lines reprernt the real 
and the extrapolated interfaces, respectively. 

116 ‘0 009-2614/85/S 03.30 0 Elsevier Science Publishers B.V. 
(North-Holland Physics Publishing Division) 



Volume 121, number 1,2 CHEMICAL PHYSICS LFITERS 1 November 1985. 

tion of x in this region. This (real) system is depicted 
in fig. 1 W#I continuois solid lirks. It is custom_ary- to 
introduce au idealized system by extrapolating the 
meniscus arid film surfaces (at constant surface ten- 
sions and capillary-pressure [2]) until they intersect 
to form a contact angle Q. The extrapolated surfaces 
are shown in fig. 1 with dashed lines. 

According to Dejaguin [3], the profile of the tran- 
sition region between the film and the meniscus 
(where u = a(x) and II = n(x)) obeys 

oK(x, Y, z) = PC - I-W , (1) 

where K(x, y, z) is the local curvature, PC the capillary 
pressure of tie meniscus and the surface tension u is 
assumed constant (usually one assumes u E 6! [4--81). 
De Feijter and Vrij [9] accounted for part of the vari- 
ation of u withx by making a local tangential (along 
Ox) force balance (see below) but in their calculations 
of the film profile they also used (1). 

Our purpose now is to derive a self-consistent set 
of differential equations describing the hydrostatic 
equilibrium of the transition region. Following [lo] 
we consider the film as divided by its surface of ten- 
sion (in this case the surface z = 0) into two parts and 
will define the local disjoining pressure as 

rI(*)=P;(*)-P*, (2) 

where PQ is the pressure in the meniscus and P&) is 
the value of the component Pzz of the pressure tensor 
at the surface of tension. Eq. (2) connects II directly 
with statistical mechanics, because Pp can be ex- 
pressed through integrals over tbe intermolecular po- 
tentials and the pair correlation functions - see e.g. 
ref. [l 11, eqs. (34.6)+34-g). Let us consider a vol- 
ume element (see fig. 2) whose lower base of area 
x dx dti (IL is the azimuthal angle) lies on the surface 
of tension and upper base is in the gas phase. Accord- 
ing to the method of the local balance (see e.g. ref. 
[ 121) we require that the local forces, acting on this 
volume along the axes Ox and Oz, are respectively 
zero. Setting equal the forces acting along the positive 
and negative direction of Oz we have ’ 

+(X+dx)a(x+dx)sin@(x+-dr)d$ 

= Pgx de dr + u(x) x sin $(x) d$ , (3) 

PL’ I-r 

Fig 2 A volume element in the transition region used for de- 
riving the conditions for local mechanical equilibrium 

where Pg is the gas pressure and Q(X) is the running 
slope angle: 

tan@=dzjdx _ (4) 

By taking the limit dlE, + 0 and dx + 0 we thus obtain 

d(o sin #)/d~ + o(x) sin @(X)/X = PC - IT(x) , (5) 

where P, = Pg - PQ_ Setting equal tie forces acting 
along the positive and negative directions of Oz, we 
similarly obtain 

P,xd$dz+(x+dx)u(x+dx)cos@(x+ti)d$ 

+ 20(x) 
dx 

- si.n(+d+) _ 
c0.s @@I 

The same limiting transition leads to 

-d(u cos @)/& + o(x) sin @(x)/x = PC _ (6) 

In a slightly different form eq. (6) was first derived in 
ref. [9]. The approximation u = conk reduces (5) to 
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Dejaguin’s equation (1). For large distances between 
the meniscus surfaces u E 2 = const., II s 0 and both 
(5) and (6) lead to Laplace’s equation in parametric 
form (see e.g. ref. [l]). However, when the meniscus 
surfaces interact, so that u = u(x) and II(x) # 0, eqs. 
(5) and (6) are no longer equivalent and their combi- 
nation leads to an interesting equation, connecting u 
and l-l: 

du/dx = -It(x) sin @J(X) , (7) 

which shows that hydrostatic equilibrium in the tran- 
sition region is ensured by simultaneous variation of u 
and II. In other words the assumptions II # 0 and u = 
const. are incompatible. Therefore, all attempts to 
ascribe the interaction between the meniscus surfaces 
either to II(x) (with u = const.) or to u(x) (with II = 0) 
are inconsistent. 

Eqs. (4) (5) (or (7)) and (6) form a full set allowing 
the calculation of z(x), G(x) and u(x) provided that 
II(x) is known from the microscopic theory. Generally 
speaking II(x) is a functional of the shape z(x) of the 
meniscus surfaces so that eq. (5) (and (7)) is in fact an 
integro-differential equation. One way to solve it is to 
use an iterative procedure, starting with II(x) for the 
idealized system as zeroth approximation_ Other forms 
of eqs. (5) and (6) which are convenient for the calcu- 
lation of the line tension are: 

d(u cos @) + P,dz = (u sin*#/x cos 0) dx , 

d (xu cos $) + PC d(xz) = (u/cos @ + Pcz) dx , 

d(x*o cos @ - xzu sin @) +Ped(x’z) 

(8) 

(9) 

={2ocos@+ [Pc+n(x)]z)xdx. (10) 

The first two follow from (4) and (6) and the third 
from (4) (5) and (6). 

Eqs. (6) and (7) can be derived also from the Gibbs 
variational principle, applied to the grand potential S2 
for a system enclosed in a box depicted in fig. 1 with 
dash-dotted lines: 

S2 = 27r jl @(z, x(z), x’(z), u(z)) + const. , 

h/2 

CD = -P&z) + l-&(z) + 20(z) x(z)(l +x’2)1’2, (11) 

where x’ = dx/dz and X(u) is the inverse of the func- 
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tion u(x) *_ When taking the variation K?, = 0 we con- 
sider the variation of o(z) as independent from that of 
x(z). In this way one obtains two Euler--Lagrange 
equations (u) = do/&r) 

=o. 

By means of (4) and,(l 1) it is easily shown that the 
first is equivalent to (6), and the second to (7). Fortes 
[13] used a somewhat similar approach (with u = u(z)) 
but he did not consider 6x(z) and 60(z) as being inde- 
pendent. Consequently, he obtained only one equa- 
tion, i.e. he missed the second equation allowing the 
calculation of u(z). 

2. Equations for the line and transversal tensions 

The conditions for mechanical equilibrium between 
the film and the meniscus in the “membrane” and 
“detailed” approach (for definition of the two ap- 
proaches see ref. 1141) read respectively: 

y+K/rc=2$COS&~, (12) 

6+ iz/r,1 = op cos o! , (134 

r=#sino. (13b) 

where y is the film (membrane) tension and K, rc, cq-~ 

respectively ii, r,l, Q are the line tension, the contact 
radius and contact angle in the membrane and de- 
tailed approaches (see fig. 3); we call r the transversal 
tension [ 14]_ We now derive expressions for K, E, and 
T in terms of u(x), II(x) and the meniscus shape. 

Let XR be chosen in such a way that at x 2 xg the 
shapes of the menisci of the real and the idealized sys- 
tems coincide (see fig. 1) and o(XXg) = g- The integra- 
tion of (8) from 0 to xg yields: 

&) Cos d(xR) - of + pe(z(xR) i h/2) 

= 

/ 
xB u(x) sin24(x) dc  _ 

cl 
x cos @J(x) (14) 

By integrating (8) from re to xg for the meniscus 
of the idealized system (set u E 2 in (8)) we obtain 

l when writing &own the functional (11) we imposed the 
requirement that with sr = 0 the variation of ~2 leads to the 
Laplace equation 



Volume 121, number 1.2 CHEMICAL PHYSICS LETTERS 1 November 1985 
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b 

Fig. 3_ The idealized system in the membrane (a) ztnd the de- 
tailed &) approaches 

= s xB op sin%(x) dx 

rc x cosS(x) ’ (1% 

where the barred quantities correspond to the idealized 
system. 

Eqs. (14) and (15) along with (12) and -y= 26+ 
P,h (see refs. [15,16]) lead to 

;=2! [(5)-(ze;,“]dx, (16) 

where the superscript %l” refers to the idealized sys- 
tem and the subscript “m” denotes that the quantity 
in parentheses must be calculated in the membrane 
model - see fig. 3a. In a similar way from (9) and (10) 
two alternative expressions for K can be derived: 

;=2i”[(s +pcz) - (~+pczj~j: y (17) 
0 

XB 
K 
-=2 

TC 
/ 
0 

{[2ucosCj+(Pc+I-l)z] 

- (20 COS d + P&l 9 _ 
c 

(18) 

The same treatment of (8), (9), (lo), and (13a) leads 
to three expressions for the line tension Z in the de- 
tailed model i.e. film of finite thickness h (subscript 
“h”) - see fig. 3b. 

&=i” [($J-(;~~]dx, (19) 

+3,z 

id ti 

)3 - , (20) 
II ‘cl 

z XB 

__= 
'Cl 

J { [2u cos 9 + PC2 + (z - 11/2) l-l] 
0 

xdr 
- (20 cos q5 + &#I 7 . 

cl 
(21) 

Eq. (20) was first derived by de Feijter and Vrij [9] 

by a different method. All eqs. (16)-(21) contain the 
film radii and the meniscus capillary pressure so that 
generally speaking K (and 3 will depend on the geo- 
metrical parameters of the system. There are experi- 
mental indications that such a dependence exists [ 17, 
181. 

By multiplying (5) by x dx, integrating it and using 
(13b) one can derive an expression for the transversal 
tension: 

XB 
-1 

7 = rcl s Klvd - n(x)1 x dx , 

0 

(rr)id = PC forO<xCrct; 

=0 forx >rcl . 

One sees that T- Is an integral effect of the difference 
of the dijoining pressures in the real and idealized sys- 
terns whereas K and ii (see (16) and (19)) are aIs0 inte- 
gral effects but determined by u(x) and the slope angle 
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G(x) rather than by II(x). The fact that K, ii and r are 
represented as integrals over smell differences suggests 
that they should be very sensitive with respect to mi- 
nor variations of the functions in the int<yands. In 
this respect the replacement of u(x) in (jj by ue may 
substantially affect the result of the calculations. 

Similar, although more complicated calculations, 
allowed us [ 191 to derive equations for the transition 
region, the line and transversal tensions of asymmetric 
planar and spherical films, which will be soon pub- 
lished. 
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