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A urinlional procedure [or deriving the condilions for mechanical equilibrium belwcen a planar film of finite thickness and 
the external meniscus is ~onnulatec. 11 is shown thnr the normal condition can be salisfied only if a new “transversal” wnsion 
is inIroducul_ 

In this work we use Gibbs’ theory of capillarity [l] 
and its recent extension to linear and point phases [2] 
in order to derive the force balance equations at the 
periphery of a thin liquid film of ftite thickness. For 
clarity we give a brief outline of the Gibbs approach. 
A detailed and rigorous treatment can be found in 
refs. [ 1,3-5]_ The transition regions between the 
phases in real non-homogeneous systems have ftite 
thickness or width and the forces acting in them 
(more precisely, the pressure tensor) are continuous 
functions of the position. In the Gibbs treatment the 
phases are considered as being homogeneous, the tran- 
sition regions are replaced by sharp boundaries (sur- 
faces, lines or points) and the integrals over the pres- 
sure tensor are replaced by forces acting on the sur- 
faces (e.g. surface tension) the lines and the points. In 
order to make these idealized (model) systems equiva- 
lent to the real ones, excesses of the extensive proper- 
ties are also introduced. The positions of the phase 
boundaries (surfaces, lines and points) in the model 
systems are fmed by the conditions for equivalence of 
the real and model systems both mechanically and 
with respect to the extensive properties. In some cases 
the positions of a few boundaries can be chosen arbi- 
trarily. Some of the macroscopic parameters so de- 
fined can depend on the localization of the bounda- 
ries (e.g. the surface tension of a drop depends on the 
choice of the drop radius [1,3,4]), i.e. on the choice 
of the idealized system, but once this choice has been 
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made all parameters have well defined fmed values for 
a given physical state of the real system. For the line 
tension this problem was investigated by Navascues 
and Tarazona [6]. 

The macroscopic parameters so defined are amen- 
able to experimental measurement. The connection 
between the measured thermodynamic macroscopic 
parameters (surface tension, disjoining pressure, film 
and line tensions, etc.) and the force distribution in 
the real non-homogeneous system can be established 
only via a microscopic theory, allowing the represen- 
tation of the thermodynamic parameten as integrals 
over the pressure tensor or some other equivalent 
forces, defmed locally. Such a microscopic theory is 
presented in the following paper [7]. 

Two equivalent approaches have been used in the 
macroscopic theory of thin films: we call them +he 
“membrane approach” when the film is considered as 
a membrane of zero thickness and one tension 7 act- 
ing along the surface of tension, and the “detailed ap- 
proach” when the film is lreated as a homogeneous 
liquid layer of thickness h and two film surface ten- 
sions, u: and of2 (see refs. [4,8]). All phase boundaries 
are assumed to be the surfaces or lines of tension (see 
refs. [3,8,9]). 

We will study now in the framework of the detailed 
approach the mechanical equilibrium of a symmetrical 

film (of = o$ = af> surrounded by a meniscus (of sur- 
face tension ur) in the absence of gravity - see fig. 1. 
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Fig. 1. The membrane and the detailed approaches (on the 
right- and left-hand side. respectively). 

Such films may have translational [lo] or cylindrical 
[ 1 I] symmetry. The right-hand side of fig. 1 illustrates 
the membrane approach. The extrapolated meniscus 
surfaces z(x) (extrapolated at constant capillary pres- 
sure [9]), meeting at the contact line (at x = rc) form 
an angle 2~~0~ For translational symmetry the balance 
of the forces acting along the axis Ox at the contact 
line yields 

y=2o%os(Y~. (1) 

The force balance along the axis Oz in this (membrane) 
approach is automatically satisfied. When the film has 

a cylindrical symmetry (when z(x) is the generatix of 
the meniscus surface), eq. (1) must include a term ac- 
counting for the line tension K of the contact line C 
[12]: 

Y+K/Tc=2dlCOSCQ. (2) 

It was shown in ref. [9] that the contact line(s) de- 
fined by the extrapolation procedure described above 
is a line of tension, so that (2) does not contain the 
term aK/& accounting for the virtual displacement of 
the contact line. 

There are TWO contact lines and two film surfaces 
in the detailed approach (see the left-hand side of 
fig. 1, where Cl and C2 are the points where the two 
contact lines pierce the plane of the drawing). For 
cylindrical symmetry the contact lines are circumfer- 
ences with radii r,l - see fig. 2. In the case of a film 
of finite thickness the contact angle Q # ix0 - see fig. 1 
and ref. [ 131. The tangential condition for equilibrium 
(along Ox) in the detailed approach for translational 
symmetry was formulated by de Feijter-and Vrij [14] 
and derived by a variational procedure by Toshev and 
Ivanov [15]: 

Fig 2. A planar flrn in contact with a biconcave meniscus In 
the cast of an axially symmetric meniscus the contact lines 
are two equidistant circumferences (lower part of the figure). 

of=aPCOSLr. (3) 

For axially symmetric films one can write for each 
contact line (see [ 141): 

of+ z/r,1 = ap cos Q ) (4) 

where i? = Zl = K2 is the line tension of the respective 
contact line Cl or C2. There is a simple relationship 
between the two line tensions, K and iz. Imagine that 
the plane of the paper in fig. 1 is a solid plate dividing 
the real fiLn into two portions. Let us represent the 
film on the one side of the plate by the detailed ap- 
proach and. that on the other side by the membrane 
approach (the two models are depicted on the left- 
hand side of fig. 1 by solid and dashed lines respective- 
ly)_ Since the two models are mechanically equivalent 
(they refer to the same real system) one obtains 

K = 2ii + p&A - 2$AI + 26Arc, 

where PC = Pg - PQ is the capillary pressure, AA is the 
area of the dashed curvilinear triangle in fig. 1, AZ is 
the length of the arc Cl C’, Arc = rcl - r, and the rela- 
tionship -y= 26+ P,h [4] was used. If one sets h = 0, 
one obtains z = ~12. 
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The balance of the pressures, acting on the film sur- 
faces, yield; (see e.g refs. [+I 51): 

pg=pN=pQ+ f-f, (5) 

where fI is the disjoining pressure [ 161, Pg and PQ are 
the pressures in the bulk gaseous and liquid phases and 
PN is the normal component of the pressure tensor in 
the film. The pressure difference PN - PQ can be con- 
sidered as a mechanical definition of fI. Eq. (10) below 
is an equivalent thermodynamic definition. 

Eqs. (3) (or (4)) and (5) do not form a complete set 
of equations describing the mechanical equilibrium be- 
tween the film (in the detailed approach) and the sur- 
rounding phases, because there is no counterbalance 
to the normal force 2 sin 01 acting on each of the con- 
tact lines. 

We will try to resolve this problem by using the 
variational method of Gibbs [l] as formulated and ex- 
tended for linear phases by Boruvka and Neumann [2] _ 
In the detailed approach (see fig. 2) one must ascribe 
to the film surfaces (superscript “f”) and to the con- 
tract lines (superscript “L”) excesses of the internal 
energy U, entropy S and the number of moles Ni of 
each component (i = 1,2, . . . . k): U’, Sf and Ni for the 
film surfaces and UL, SL andiVr!- for the contact Lines_ 
As Rusanov pointed out [4], since the two film sur- 
faces interact, the excess surface internal energy lJf 
will depend not only on Sf, Nif and the film area A, 
but also on the thickness h, i.e. 

dU’=TdSf+26dA+ cpidNNif 
i 

+ wfm)sf,A, w;j dh . (6) 

The temperature T and the chemical potentials pi (i = 

1,2, ___, Jc) have the same values for all phases at ther- 
modynamic equilibrium. 

Since the shapes of the real surfaces in the transi- 
tion region between the film and the meniscus depend 
on the surface-surface interaction, the excess linear 
internal energy UL in the idealized system, depicted in 
fig. 2, will depend not only on SL, N,b and the contact 
line length L but also on h. Therefore, by analogy with 
(6) one can write 

dUL=TdSL+2iidL+ &$ViL 
i 

+ (a uLIw,L, L, wit, s (7) 

Following Gibbs [ 11, let us imagine a box of fmed 
volume V(shown with dotted lines in fig. 2) contain- 
ing the thin film and macroscopic portions of the 
phases environing the film. The box walls are per- 
meable for the molecules of all components, i.e. all 
chemical potentials are fwed. Since the temperature is 
also fixed, the thermodynamic potential for the sys- 
tem in the box is the grand potential R = U - TS - 
Z& PiNi and the necessary condition for equilibrium 
reads 

(6%-, V,(P)’ 0 > (8) 

where 651 is the first variation of 52. The fundamental 
equation of the system in the box is obtained by sum- 
mation of the fundamental equations of all phases (for 
the film surfaces and the contact hoes see eqs. (6) and 

(7)). 
Let us fmt consider a subsystem (shown in fig. 2 

with dash-dotted lines) of fmed volume V’, tempera- 
ture and chemical potentials. It contains only a por- 
tion of the film (of constant area A’) witJzout the con- 
tact lines. The variation of its grand potential 52’ corre- 
sponding to a variation of the film thickness in the sub. 
system with 6h is (see eq. (6)) 

(HL’)T, V’,A’, 01) = -P$ V; - PQ6 v; 

+ (a uflahj 611 . (9) 

Since 6 Vi = -6 Vi = A’6h and at equilibrium 652’ = 0, 
from (9) one obtains 

-A’-l(auf/ah),,~,o~n=~, -pn; (10) 

obviously the left-hand side term is independent ofA’. 
In fact, the variational derivation of (10) was fiit 
given by Rusanov [4] _ 

We return now to the whole system. The volumes, 
areas and length involved in (8) are 

_) 

vg=2J x2(z) dz > 
h/2 

An = 4~ i’ x(1 +~‘~)l’~ de , 
jr/2 

A=&, L = 27rr,1 ) 

where x’ = dx/d.z. 

(11) 
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Since the variation at fmed r,l and h leads to a triv- 
ial result (it yields the Laplace equation for the menis- 
cus) we take or&the partial variations with respect to 
the independent variables r,J and h. Then, from 

(652)T,v,o1)=-(p,--~8vg+~SAP+idSA 

+ 2~6~ + (au f/ah + a uVah) 6h (12) 

along with (11) and the general equation for the vari- 
ation of a functional with moving boundaries (see e.g. 
ref_ [ 171, Chap. 7, 82) we get two transveaahty con- 
ditions: 

-a*/ax’lr#2 + 4r& + 47r?i = 0 , (13) 

(-a + ~‘awa~‘),,,~ +2(auf/ah+auL/ah)=0, (14) 

where 

@(z, x,x’) 

=27r[-(Pg-PQ)x2+2u%(1 +x’2)q - (15) 

Since x’(z = h/2) = ctg Q (see fig. 2), from (10) and 
(15) we fmally obtain 

d+;Z/rc,=u%OSQ, (16) 

~-‘(a uLjah)L sL vvLJ = 7 = 2 s-m Q . (17) 

Eq. (16) coincides [with (4), but eq. (17) is new and 
it is precisely the missing normal condition for equi- 
librium. One sees that the normal component of the 
surface tension force 2 sin or is counterbalanced by 
the tension r, which is due to the interaction between 

Fig. 3. The force balance in each point of a straight contact 
fine 
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the two contact lines. The r-tension is a vector, acting 
on the contact line and directed toward the film nor-. 
mally to its surfaces (see fig. 3). That is why it can be 
conveniently called “transvetial tension”. With a 
straight contact line ?i/feL + 0 and (16) reduces to (3), 
but (17) remains unaltered, i.e. as opposed to the line 
tension, the transversal tension is of importance even 
for large films. ; 

In conclusion, we add a few comments on the vari- 
ations of !Z!’ and R with respect to h that have led us 
to eqs. (10) and (14) (respectively (17)). Because of 
the restriction imposed by us on the film shape (a 
planar film) we had-to split the variational procedure 
into two steps and since each of them involves varia- 
tion with respect to h it may seem that eqs. (10) and 
(14) are not independent. In fact, they are. We could 
have allowed the film thickness h and therefore, the 
film surface tension of, to be functions ofx, so that R 
would have been then a functional of h and u. Then 
the variations with respect to h(x) and of(x) at f?.xed 
film boundaries,would have given Euler--Lagrange 
equations that would have led to generalized Laplace 
equations, of the kind of e s. (5) and (6) in ref. [7]. 
By setting h = const. and 3 = coast. we would have 
again obtained (10) (cf. eq. (5) in ref. [7]). The varia- 
tion of the film boundaries would have led us, within 
the framework of the model, considered here, again to 
(16) and (17). Therefore, the variation of Sz’ is tanta- 
mount to deriving the Euler-Lagrange equation and 
the partial variation of fl with respect to rCl and h 
yields the transversality conditions, so that these varia- 
tions are independent. 
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