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The stability of thin (< 100 nm) symmetrical and unsymmetrical membranes, assimilated with 
viscous liquids, to short and long wavelength perturbations is investigated. The asymmetry is due 
to the two different viscous phases surrounding the membrane and to the different interfacial ten- 
sions on the two faces of the membrane. The cell membrane is a case for which the present treat- 
ment is of significance. The dynamics of the membrane to perturbations is described by the 
Navier-Stokes equation modified with a body force which accounts for the fact that the range of the 
interaction forces is larger than the thickness of the film. The body force is computed assuming 
pair-wise additivity and accounting for the deformation of the interface produced by the perturba- 
tion. General dispersion equations are derived, and these equations describe the squeezing and 
stretching modes of perturbations. The growth coefficient is expressed as a function of the wave- 
length for various ratios of the viscosities of the two surrounding phases and various values of the 
two interfacial tensions. In the limiting cases of interfacial tension ratio equal to unity and wave- 
length large compared to the thickness of the film results of the previous investigators are ob- 
tained. For the symmetrical case expressions are derived for the critical and dominant wavelength of 
the squeezing and stretching modes. An application of the results to a cell membrane shows that the 
growth of the instability is dominated in this case by the stretching mode since the time scale of 
growth of the perturbations is four orders of magnitude less than that in the squeezing mode. For 
unsymmetrical systems the effect of differences between the interfacial tensions on the two faces 
on the ratio of the amplitudes of perturbations on the two faces is investigated. The results show in 
what manner differences in interfacial tension convey amplified or damped messages across 
the membrane. 

INTRODUCTION 

The study of surface wave-induced 
hydrodynamic instabilities in thin (O(10- 
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100 nm)) liquid films has been the focus of a 
number of investigations by several workers 
(1-18). Although the motivations behind 
these investigations are diverse, clearly the 
most significant is the importance of this 
subject toward the understanding of particle 
coalescence phenomena in a continuous 
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SQUEEZING MODE 

(SYMMETRIC MODE ) 

STRETCHING MODE 
(ANTI -SYMMETRIC MODE) 

FILM ONA SOLID SURFACE 

FIG. 1. Various modes of instability of a thin liquid 
film. In the squeezing mode, the corrugations at one 
interface of the film is completely out of phase with 
the corrugations at the other interface (~b = ~-). In the 
stretching mode this phase difference is zero (~b = 0). 
When the film is supported on a solid surface, only 
one interface is corrugated. 

liquid phase and the stability of the cell 
membrane.  

In a dispersion, the approach of  two 
particles (e.g., gas bubbles or liquid drop- 
lets) of  the dispersed phase creates a radially 
bounded film which subsequently drains 
under the combined action of capillary suc- 
tion at the plateau border  and the disjoining 
pressure.  If  stabilizing surfactants are not 
present  in sufficient amounts  in the film 
system, the draining film will generally rup- 
ture at a thickness of  the order  of 10-100 
nm. According to deVries and later Sche- 
ludko (19), the rupture is caused by the un- 
damped growth of  mechanically or thermally 
induced corrugations in the film interfaces. 
These  corrugat ions  grow because  the 
system becomes unstable to interfacial 
fluctuations at small film thicknesses. 

The biological cell provides a contrasting 
example of  a system in which a thin film 
plays a crucial role (13, 15, 30). The cell 
membrane is a highly viscous lamella 
bounded by two different liquid phases 
(i.e., the intra- and extra-cellular fluids) and 

having different interfacial tensions on the 
two faces. Certain cell processes such as 
mobility, ingestion (via phagocytosis),  and 
microvilli elaboration involve a deformation 
of the membrane.  Reasons for the onset  of  
these membrane deformation processes 
have not been fully elucidated, and it is 
hoped that a theoretical understanding of 
the stability of  symmetric and unsymmetric ,  
thin liquid films to short (k -< h) and long 
(k > h) wavelength per turbat ions  may 
provide insight into the origins of  such 
processes.  

The goal of this investigation is to 
examine the stability of pure, radially 
unbounded thin films bounded by two dif- 
ferent liquids and having different interfacial 
tensions on the two faces. A short review of 
previous work is in order. Felderhof  (2) 
analyzed the dynamics of a free film com- 
posed of an inviscid fluid and considered in 
detail both the squeezing and stretching 
normal modes (Fig. 1). This study was later 
extended by Sche (16) and Sche and Fijnaut 
(17) to include the effect of liquid viscosity. 
Ruckenstein and Jain (8) investigated the 
stability of the squeezing mode of a free 
film, but the major part of  their investiga- 
tions (8, 11) was concerned with a film 
on a solid substrate (Fig. 1). Lucassen et  

al. (5, 6) formally treated the stability of a 
liquid film bounded by two different viscous 
phases, but only derived an explicit disper- 
sion equation for the squeezing mode of  a 
symmetrical  film system (i.e., a system in 
which the film is bounded by the same phase 
and in which gravity is neglected). Finally, 
Joosten et  al. (14) extended the analysis 
of  Lucassen et  al. to a free film by con- 
sidering the stretching mode of the sym- 
metrical system. However ,  the dispersion 
equations obtained by Lucassen et  al. and 
Joosten et  al. are strictly applicable only 
to long wavelength interfacial disturbances 
(i.e., disturbances with Fourier  component  
wavelengths which are much larger than the 
thickness of  the film) because of  the expan- 
sion method they employ to account  for the 
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influence of the long-range van der Waals 
interaction on the film dynamics (see 
below). In the work presented here, we 
will examine the stability characteristics of 
thin films for short as well as long wave- 
lengths. 

An important aspect of studies concern- 
ing the dynamics of thin films is the pro- 
cedure utilized to account for the influence 
of the long-range van der Waals force on 
the film stability. The consideration of this 
force is essential: The maximum range of the 
van der Waals interaction (O(100 nm)) is of 
the same order of magnitude as the char- 
acteristic film thickness, and consequently 
energy inhomogeneities are created by this 
interaction in the film and in the adjoining 
phases. (This same phenomenon also occurs 
in the transition region between two bulk 
phases and is usually analyzed through the 
concept of surface tension.) Two different 
procedures have been utilized to account 
for the influence of the van der Waals inter- 
action on the film dynamics: a disjoining 
pressure approach (3, 4, 20, 21) and a body 
force procedure (2, 8, 11). 

In the disjoining pressure approach, the 
film and the surrounding phases are treated 
as energetically homogeneous (with respect 
to the van der Waals interaction) up to the 
dividing surfaces which define the interfaces 
of the film. (This defines the idealized 
system.) The inhomogeneity caused by the 
van der Waals interaction is incorporated 
as a surface excess energy in a procedure 
analogous to the thermodynamic treatment 
of interfacial tension. Using this approach, 
one can show that the normal component of 
the stress tensor (of the idealized system) 
suffers a discontinuity (the disjoining pres- 
sure) at the dividing surface of the film. 

The disjoining pressure approach has the 
advantage that all types of intermolecular 
forces (i.e., dispersion, Keesom, and 
Debye-Falkenhagen forces) which con- 
tribute to the long-range van der Waals 
interaction can easily be formulated in the 
expression for the disjoining pressure by 

utilizing Lifschitz's theory. However, as 
shown below for the stability analysis, an 
expression for the disjoining pressure of an 
interfacially deformed film is required. In all 
previous works (4-7, 9, 10, 12, 14), such 
an expression has been obtained by ex- 
panding the disjoining pressure of a plane 
parallel film in a power series with respect to 
the film thickness. This procedure is valid 
for long wavelength interracial disturb- 
ances, but it is not valid for short wave- 
length disturbances. 

In the body force approach, the influence 
of the van der Waals force is incorporated 
as a body force in the Navier-Stokes 
equation of motion. The force is derived 
from a potential which describes the energy 
of interaction (due to the van der Waals 
force) of molecules in an infinitesimal 
volume of continua with respect to the 
entire ensemble of molecules in the system. 
In the usual application of the body force 
approach, this potential is calculated via a 
microscopic Hamaker procedure in which 
the intermolecular potential is integrated 
over the system volume. Although an ade- 
quate approximation for describing the dis- 
persion contribution to the van der Waals 
interaction, the Hamaker procedure is insuf- 
ficient for incorporating the dipolar con- 
tributions (i.e., the Keesom and Debye- 
Falkenhagen forces) since these are incom- 
patible with pair additivity. However, this 
need not be considered a serious limitation 
since ad hoc methods for incorporating 
the dipolar contributions into the Hamaker 
procedure have been developed (22). 

Utilization of the Hamaker procedure to 
obtain the body force potential has two 
distinct advantages: First, in contrast to the 
disjoining pressure approach it can easily be 
formulated for any interfacially corrugated 
state of the film's interfaces and is there- 
fore applicable to both short and long wave- 
length disturbance regimes. Second, it is 
computationally easier to formulate the 
Hamaker potential for an unsymmetrical 
film system (i.e., a film bounded by two 
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@ • _ _  ~ - ' ~  equations are analyzed numerically to 
examine the stability characteristics of the 

_i'~_ film to short wavelength perturbations. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  _ Finally, the dispersion equation for the 

PHASE ~, unsymmetrical system is analyzed nu- 
-~- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  merically to study the role of interfacial 

PHASE III 

FIG. 2. The infinite system. The two interfaces, 
arbitrarily deformed, are separated by an infinite 
reservoir of phase II (region "A") .  

different viscous phases) than it is to cal- 
culate the disjoining pressure of such a 
system. 

Since this investigation is concerned with 
both symmetrical and unsymmetrical film 
systems, the body force method, in conjunc- 
tion with the Hamaker procedure to cal- 
culate the intermolecular potential, is 
utilized. Although in all studies in which the 
body force method has been used (2, 8, 11, 
16, 17) the Hamaker procedure has been 
employed to calculate the potential, no care 
has yet been taken regarding a systematic 
formulation of this potential for corrugated 
interfaces. Consequently this analysis be- 
gins with a systematic formulation of the 
Hamaker potential for an unsymmetrical, 
arbitrarily deformed film system. The basic 
equations for the first-order approximations 
for the field variables follow. These equa- 
tions differ from those established pre- 
viously through the expression of the body 
force which contains the effect of the 
corrugation of the interface and through 
different viscosities and interfacial tensions. 
A general dispersion equation is established 
in the next section which is valid for both 
short and long wavelength disturbances. 
The final sections of the paper examine the 
dispersion equation for symmetrical and un- 
symmetrical systems. First, the asymptotic 
forms of the symmetrical dispersion equa- 
tions are derived for the stretching and 
squeezing modes in the long wavelength 
limit. Then, the symmetrical dispersion 

tension asymmetry on the film behavior. 
Wherever possible, results are used to ex- 
plain available experimental data. 

FORMULATION OF THE BODY FORCE VIA 
A HAMAKER PROCEDURE 

To compute the long-range van der Waals 
interaction potential, it is useful to consider 
the state in which the interfaces of the film 
are arbitrarily deformed and located an in- 
finite distance apart from each other (see 
Fig. 2). In this "infinite" system, the inter- 
faces are isolated and can be separately 
treated in the manner of Gibbs as dividing 
surfaces of zero thickness separating phases 
which are homogeneous in all intensive 
properties (e.g., density and energy) up to 
the dividing surfaces. The spatial inhomo- 
geneities in energy (which are especially 
pronounced in the interracial transition re- 
gions) caused by the van der Waals force 
are accounted for by treating the dividing 
surfaces as membranes in isotropic tension; 
by utilizing this procedure, the idealized 
Gibbs system is made mechanically equiva- 
lent to the real system and no body force is 
considered. (In what follows, the liquid 
comprising the film is referred to as phase 
II and the fluids comprising the upper and 

PHASE III 

Fro. 3. The film system. Region " A "  has been 
removed to an infinite reservoir of phase II. The origin 
of the coordinate system is on the midplane of the 
unperturbed film. 
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122 M A L D A R E L L I  E T  AL.  

lower semi-infinite media are denoted by 
phases I and III, respectively. The inter- 
faces between phases I and II and II and III 
are referred to as the upper (u) and lower (1) 
interfaces, respectively.) 

When the interfaces are brought close to- 
gether by removing (to an infinite reservoir 
of phase II) region " A "  of Fig. 2 to form 
the film system (Fig. 3), the molecules in 
the film and the adjoining phases experience 
a change in potential energy. The change in 
potential energy is derived by first com- 
puting the potential energy of interaction 
(due to the van der Waals force) of mole- 
cules in an infinitesimal volume of con- 
tinua with respect to (i) the rest of the mole- 
cules in the film system (Fig. 3) and (ii) the 
rest of the molecules in the infinite system 
(Fig. 2) and then subtracting the energy ob- 
tained in (ii) from that calculated in (i). This 
difference is termed the excess van der 
Waals potential; the negative gradient of this 
potential is the body force which is intro- 
duced into the equation of motion. 

In the Hamaker procedure, the potential 
energy of interaction is computed by inte- 
grating the intermolecular potential u(r) (the 
mutual potential energy of two molecules 
separated by a distance r) over the system 
volume. Thus in this procedure, the excess 
van der Waals potential admits the following 
integral representation: 

f 

W(r,t) = / w ( l r -  r'l'2)P(r"t)dr' 
fi lm 

system 

- I w(Ir - r ' l '2)p(r  ',t)dr'. [1] 
inf ini te  
system 

In Eq. [1[ t represents time, p(r',t) is the 
mass density at the source point r ' ,  W(r,t) 
is the excess van der Waals potential (per 
unit mass) at the field point r, and w(r) is 
the intermolecular potential u(r) divided by 
the masses (per molecule) of the molecules 
located at r and r' .  

To formulate an explicit expression for 
the excess potential in terms of the Cartesian 
coordinate system diagrammed in Fig. 3, the 
following functions prove essential: 

Fi~(s) = p~O ~ 27rrw~z(r)dr [21 

H~,j(x,y,v,t)=p~ff f~= i~ ~ f](~,~,t, 

w ~ A ( ( v  - ./)2 + ( x  - a )  2 

+ (y - fl)2)l/2)dydflda [3] 

H]z(x,y,v,t)=pipj f ~  f ~  fjff(~,~,t) 

w ~ A ( ( v  - 7)  2 + ( x  - a)  2 

+ (y - fl)2)l/2)dydflda. [4] 

The variables s ~ and ~7 define the interfacial 
perturbations (see' Fig. 3). The function 
F~z(s ) represents the potential energy (per 
unit volume) at a point r in phase i due to an 
infinite plane of phase j that is located a 
perpendicular distance s from r. The func- 
tion H~(x,y,v,t)(H~(x,y,v,t)) is the pertur- 
bation in the potential energy (per unit 
volume) at a point in phase i, with co- 
ordinates x, y and located a distance I vl 
from the unperturbed upper (lower) inter- 
face, caused by the displacement of phase 
j with the corrugation of the interface. In 
Eqs. [2]-[4] density variations have been 
neglected since the fluids comprising the 
film system are assumed incompressible. 

With the aid of these functions, the inte- 
gral representation of the excess potential 
can be written with reference to the x, y, z 
Cartesian coordinate system of Fig. 3. 

pIWI(x,y,z,t) = ( F t , i i i ( u )  - Flai(u))du 
+hl2 

+ H2,III  x ,  y, z + -~- , t 

- H ] , n  x ,  y ,  z + -~- , t [51 
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pnwn(  x ,y ,z ,t ) 

f; = (FH.iii(u) - Fii,n(u))du 
+hi2 

+ H]I,I,I X, y, z + ~-  , t 

- H ] , , n  x ,  Y ,  Z + - ~  , t 

( ( x , t )  + - -  > z > - -  - hi [6] 
2 2 

(,/ pXXWXI(x,y,z,t) = (F~.tx(U) 
12--z 

FII,II(t /))dH + 1 ( h ) 
- -  H i i , n  x ,  y ,  z - - ~ - ,  t 

- - H I , I I  x,  y ,  z - -~  , t 

[ h -  hx > z > ~?(x,t) - h ] [7] 

pIITk~ZII = plIWII + pIIWIool(l ) 

DIll?k~zIII = pIIIWIII + plIIWIooI{a ). 

Here,  W~ indicates the total potential; 
WLm and WL(2) are the reference poten- 
tials (the subscript 1 indicates that the I, II 
interface is infinitely far away and the sub- 
script 2 indicates that the II, III interface 
is at infinity). Note  that since the reference 
potential for z > h/2 - h~ is taken different 
than that for z < h/2 - h, ,  the excess po- 
tential is discontinuous at z = h / 2 -  ha 
even though the total potential in the film, 
WII, is continuous. However ,  the disper- 
sion equation involves only the gradient of  
these potentials; the choice of the reference 
potentials does not create any problem, as 
will be evident in the next  two sections. 

STABILITY ANALYSIS 

p I I I W i I I ( x , y , z , t )  = (Fi , i i i ( t / )  
12--z 

( -- Fi i , i i i (u))db/  + HII,III x ,  y, z - -~- , t 

--  H } , n i  x ,  y ,  z - - ~ -  , t . [8 ]  

In the above equations h is the film thick- 
ness; ha is an arbitrary parameter  utilized 
in dividing the film volume (see Figs. 2 and 
3). The roman numeraled superscripts indi- 
cate the phase in which the scripted quantity 
is evaluated. 

It is important  to note that Wi(x ,y , z , t )  is 
the excess  van der Waals potential; the total 
potential is the sum of the excess potential 
and the reference potential. Thus 

DIW 1 = p lWI  + plWI(2) 

DIIV~ rlI = p l IW II -]- plIWI~I(2 ) 

~ ( X , I )  + - -  > Z > - -  - -  h i  
2 2 

This investigation is concerned with the 
interfacial stability of an unbounded,  non- 
thinning liquid film surrounded by two dif- 
ferent viscous phases and having different 
interfacial tensions on the two faces. Since 
the film is not thinning, the base state is 
taken to be one in which the flow velocity is 
zero and the film interfaces are plane 
parallel. Infinitesimal perturbations are ap- 
plied to the interfaces of the film, and the 
object of the analysis is to determine the 
stability of the resulting fluid motion. For  
simplicity, only two-dimensional motion is 
considered; the extension to three dimen- 
sions is discussed after Eq. [77]. 

The field equations which are necessary 
to describe the fluid motion are the con- 
tinuity and the Nav ie r -S tokes  equations 
for an incompressible fluid (23, 24). The 
boundary conditions at the displaced inter- 
faces are the continuity of  velocity require- 
ment, the kinematic relation, and the 
tangential and normal stress balances (24). 
Fur thermore,  the disturbance must decay 
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to zero at an infinite distance from the 
perturbed interfaces. 

In order to ascertain the stability of the 
fluid motion induced by the interfacial 
perturbations, the field equations and 
boundary conditions for the flow are solved 
by using perturbation methods (23). The 
field variables of the system are expanded 
in a series about their values in the base 
state. Since the initial disturbances are 
infinitesimal, it suffices to consider only 
linear terms. Therefore 

pJ = p~o(Z) + ep~l(X,Z,t)  [91 

u ~ = ~ u ~ ( x , z , t )  [101 

v j = e v ~ ( x , z , t )  [11] 

¢ = e~:l(X,t) [12] 

"O = E'q~(x,t)  [13] 

W ~ = WJo(Z) + e W ~ ( x , z , t ) .  [141 

In the above set of equations, E is a small, 
dimensionless parameter, and the sub- 
scripts "0"  and " 1 "  indicate the base state 
and first-order values, respectively, of the 
scripted quantities. The variables pJ, u ~, 
and v s denote, respectively, the pressure 
and the x and z components of the velocity 
vector (all of phase j). 

The base state distribution for the excess 
van der Waals potential is obtained from 
Eqs. [5]- [8] by setting the H~,j and H~,~ func- 
tions equal to zero. Thus 

p I w I ( Z )  = ( F , , m ( u )  -- F i , n ( u ) ) d u  
+hi2 

[15] 

pIIWII(z ) = If+h/2 
12-z 

(FII,III(tt) - F n , n ( u ) ) d u  

(Fl , i i (u )  -- F l l , n ( u ) ) d u  

> z > - - - h 1  
2 

[161 

pllIWIII(z ) = (FI,III(R) -- Fll,iii(//))du. 
12--z 

[171 

Explicit expressions for the first-order 
excess van der Waals potential, W{, are ob- 
tained by expanding the Hl j and H~.j func- 
tions in a power series about ~ and ~ equal 

to zero, and then substituting the first-order 
approximations for £ and ~ (Eqs. [12] and 
[13]) into these expansions. The results 
for one-dimensional interfacial disturbance 
(two-dimensional flow) are: 

2( h) ( h) 
p x W I ( x , z , t )  = Q i , m  x ,  z + - ~  , t - Q],II X, Z + 7 '  t 

p I I W l I I ( x  , z , t )  = 

( Q]I,III ( x ,  

Q}I,II ( x , 

h) 
z + ~- , t - Q li,ii X,  Z + -~-  , t 

z - 5 - , t  - QI,II x , z  - ~ - , t  

1( h) 1( h) 
p m W ~ I I ( x , z , t )  = Q n , m  x ,  z - - - f  , t - Qi,ni x, z - ~--, t 

Journal of Colloid and Interface Science, Vol. 78, No. 1, November 1980 

> z > - - - h 1  
2 

[18] 

[19] 

[20] 



STABILITY OF THIN LIQUID FILMS 125 

where 

Q1,5(x,v,t)= p~pJ I~ f~  ~i(o~,t)w~z 

((V 2 + ~z + (x -- o02)l12)d~do~ 

LL Q ~.~(x,v,t) = pip j ~l(~,t)w~,j 

((v 2 + ~2 + (x - ~)2)l/2)d~:dm 

The Base State 

In the unperturbed (base) state the inter- 
faces of the film are plane parallel and the 
flow velocity is equal to zero. Consequently 
the continuity equation and the entire set of 
boundary conditions (with the exception of 
the normal stress balances) reduce to identi- 
ties, and the Navier-Stokes equation after 
integration, becomes: 

pJo(Z) + pJgz + pJW~o(Z) = c j 

(j = I, II, III). [23] 

In Eq. [23], g is the acceleration of gravity; it 
is assumed that gravity acts in the negative 
z direction (see Fig. 3). The only nontrivial 
boundary conditions, the normal stress bal- 
ances, reduce to the following form: 

~ ( h )  ti[h~ 
Po --f = Po l--2 ) ' 

In the base state, the total force density 
(excluding gravity) is equal to the sum of the 
pressure and the excess van der Waals 
potential; thus 

PJo(Z) = pJo(Z) + pJW~o(Z) [26] 

1 / 

pIII(_ h ) -  poII(_ h ) ~  piiiW0iii( - h )  

[22] -- plIWIl(- h )  = ~ F(u)du [28] 

where 

F(u) = FI,III(U ) q- FII,II(/A) 

- -  F i , i t ( u  ) - F l l , l I i ( h l ) .  [29] 

The second equality in Eqs. [27] and [28] 
follows from Eqs. [15]-[17]. The function 
F(u) can be expressed in the following 
integral form: 

2 F(u) = 27rv#(v)dv [30] 

where 

#(r) = plpIIIwi,iii(r ) -}- pllpIIwii,ii(f ) 

- p~pIIwi,1i(r) - p~Ipmw.,m(r). [311 

Equations [27] and [28] indicate that the 
discontinuities in the force density at the 
two interfaces of the film are equal. This 
conclusion is valid despite the fact that the 

[24] adjoining phases have not been assumed to 
be identical. Hence, the equality of Eqs. 
[27] and [28] suggests that these localized 

[25] differences in the force density can be re- 
garded as a characteristic of the entire film 
system. This difference is referred to here as 
the disjoining pressure (II(h)) of a plane 
parallel infinite film. Thus: 

II(h) = F(u)du.  [32] 

where P~o(Z) denotes the gravity-excluded 
total force density of phasej.  Owing to the 
continuity in the pressure at the two inter- 
faces (Eqs. [24] and [25]), this force density 
suffers a discontinuity at z = +_h/2. Ex- 
plicitly, 

Explicit Solution for  the First-Order Field 
Variables via Normal  Mode Analysis 

The first-order approximations for the 
field variables are substituted into the field 
and boundary equations, and the resulting 
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126 MALDARELLI ET AL. 

relations are simplified to first order in e. 
After performing these operations, the field 
equations and conditions at infinity become: 

Ou~ ovl  + 
Ox Oz 

= 0  

/ oU~l _ Opl + ~JV~u{ _ / o w i  

Ot Ox Ox 

Ot Oz Oz 

(j  = I, II, III) 

l i m u l =  l i m v l  = 0  
Z--~oo  Z---~co 

lim ul II= lim V III= O. [37] 
Z-- -~- -cc  Z---->--co 

The boundary conditions at the displaced 
interfaces are composed about the math- 

[33] ematical surfaces z- - -~(x , t )  + h/2 and 
z = ~q(x,t)- h/2. The value of a field 
variable on either one of these surfaces can 

[34] be obtained by expanding this variable in a 
Taylor series (in powers of ff or 7) about its 
value on the mean plane of the interfacial 
displacements (i.e., z = +-h/2). This series 
expansion can then be expressed in ascend- 
ing powers of  ~ by introducing the first order 

[35] approximations for ~:, ~ and the system 
variable into the series. Using this proce- 

[36] dure, the first-order boundary conditions at 
the displaced surfaces become: 

V I = Vl  1 

u I = up 

vl  I _ 0~1 
Ot 

~.£11 (OLIII2coZ OvlIItOX } I[OUlI\ OZ OVa) 
- -  / X /  + = 0 

Ox 

O r 1  II ,-3,,. t 
_pl,  + 2/x,i + pI _ 2/.d ~ "  + ~I(p,IDW~I 

Oz Oz 

_ p l D W i  + g ( p l I  _ p I ) )  _ or  u 
0 2 ~ 1  

Ox 2 
= 0  

Z - -  
h 

2 

[381 

[39] 

[40] 

[41] 

[421 

V II = V III  

u u = u I" 

0"l~1 VII  - -  

Ot 

"-~ - -  /,L II "q- = 0 

Oz Ox / Oz Ox 

__pIII+ 2~IlI OvllII OVlII + pn _ 2/zu -4- ~I (pI I IDW III 
0z Oz 

- -  D I I D W I I  _}_ g ( p l l l  _ p l i ) )  _ o r l _ _  
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Oq2T h 

Ox 2 
= 0 .  

h 
Z - -  

2 

[43] 

[44] 

[451 

[46] 

[47] 
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In the above equations, /z ~ is the viscosity 
of phasej .  The variable O-u(O'0 denotes the 
tension of an interface dividing a semi- 
infinite phase of I(III) from a semi-infinite 
phase of II. [In this analysis, variation in 
these surface tensions due to the surface 
corrugations is neglected, since this effect 
is small even for wavelengths of the order 
of film thickness (31).] The symbol " D "  
denotes differentiation with respect to z. 

The set of first-order field equations and 
boundary conditions (Eqs, [33]-[47]) are 
linear and homogeneous in the unknown 
functions p{, u~, v~, ~:1, and ~ ,  (Note that 

the first-order potential W~ is an integral 
function of ~1 and ~1, cf. Eqs. [18]-[22].) 
This set of equations can be solved by 
expanding the unknown quantities in a 
series of normal modes (23). The boundary 
conditions are composed about planes of 
constant z, and therefore a suitable form 
for these normal modes is the real part of 
the product of the function exp( ikx  + wt) 
multiplied by a scalar function of z. Owing 
to the linearity and homogeneity of the 
first-order field and boundary equations, it 
is sufficient to consider only one arbitrary 
mode; thus 

-#, ] - ) ~ ( z , k )  " 

ul ~J(z,k) 

b~(z,k) v~ I = R e  

_~, _ 49(k) j 

x exp( ikx  + o~(k)t) [481 

The parameter k is the wavenumber of the 
normal mode (the wavelength (X) is equal 
to 27r/k). The variable o~ is the frequency 
of the motion (also referred to as the growth 
coefficient); the functional dependence of 
~o on k is the dispersion equation, If the 
real part of ~o(k) is greater than zero for a 
particular mode with wavenumber k, the 

film system is unstable to that mode since 
the exponential in Eq. [48] increases with- 
out bound; similarly, if Re(oJ(k)) < 0, the 
system is stable. 

The normal modes of the first order ex- 
cess van der Waals potential are obtained 
by substituting the modal forms for ~:a and 
~ into Eqs. [21] and [22]. 

( ( h )  (h))  
PlI/~ZlI(Z) = 49 /LIII Z 4- T '  k - I I , I I  g 4- T '  k [49] 

i ( ( h )  ( h 49 Imm z + --~ , k - ln.i~ z + - -  , k 
pii  l~/lll(Z ) = 2 

[ h ,k) _li,i,( z h 

>z>---h1 
2 [50] 

plII~'rIII(Z) = III,III Z --  S 
h 
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where 

× Wi,j[(V 2 + [~2 + ~2)i12]d~d[~" [52] 

Upon substituting the normal mode ex- 
pressions for the dependent  variables into 
the first-order field equations and boundary 

conditions, the following relations result: 

D ~ -  2k ~ + _ . D  2 + k  ~ +  o 

( j  = I, II; IID [531 

lira b I = lim Db I = 0 [54] 
Z----~m Z----~ c~ 

lim b rI~= lira Db m = 0  [55] 
z~-~ z---)-~ 

~)I ~ ~II 

Db I = Db'i 

(D 2 + k2)(~£II~ I1 - ~(LI~ I) ~'~-0 

/ ~ I ' ( D a - ( 3 k 2  +-~H)D)I f l I -  tx l (D3-  (3k2 + ~II)D) ~I 

----~ or,+ dh 
I(h) ~)II ( __ 

~)II ~ bill 

DbH = D~ In 

(D 2 + k2)(~ii~)ii _ [.¢iIi~11i) = 0 

~tLllI(n3- (3k2 -~ l , i~ i )n)  ~)III - [ - £ I I ( n 3 -  ( 3k2 "~- (Dlel~Ilb, li ] ] 

~1- __ p i l ) ) )~ i i (h)  I ( h )  

[56] 

[57] 

= 0  

h g -- 

= 0 .  

h 
z = - -  [58] 

2 

[59] 

[60] 

[61] 

[62] 

[63] 

The/5  j, h ~, ~, and 4/ functions have been 
eliminated by utilizing the continuity equa- 
tion, the kinematic relations and the x com- 
ponent of  the equation of  motion. The I(h) 
function appearing in the normal stress 
boundary conditions is defined as: 

I(h) = li,m(h,k) + In,ii(h,k ) 

- I1,ii(h,k) - In,m(h,k). [64] 

By utilizing Eqs. [31] and [52], I(h) can be 
expressed in the following integral form: 

I (h )=hZ I~ f~_oocos(khfl ') 

× v~(h(1 + fl,2 + ~,2),/2)d~,dfi, [65] 

where v~(r) is defined by Eq. [31]. 
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The remaining field equation (Eq. [53]) is 
easily integrated: 

bH(z,k) = C1 cosh (kz) + Cz sinh (kz) 

+ C3 cosh (kqnz) + C4 sinh (kqlIz) [66] 

bl(z,k) = C~ exp( -kz )  

+ C6 exp(-kqlz) [67] 

~:m(z,k) = C7 exp(+kz) 

+ C8 exp(+kqlnz) [68] 
where 

O) ) 1/2 
qJ = 1 + u-~2 

Re[q j] > 0  (j  = I, II, IID. [69] 

The variable v ~ in Eq. [69] is the kinematic 
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viscosity (~/p~) of phasej .  Since the wave- 
length of perturbation, X, characterizes a 
physical quantity, it can take only positive 
values. Therefore, in obtaining Eqs. [66]- 
[69], k has been restricted to positive values 
and the boundary conditions at infinity 
(Eqs. [541 and [551) have been used. 

When the integrated field equations are 
substituted into the boundary conditions 
at z = +_h/2, a set of eight linear, homo- 
geneous equations in the eight constants, 
C1-C8, are obtained. Since only nontrivial 
solutions to the b j functions are desired, 
the determinant of the matrix of coefficients 
of the eight constants must be set equal to 
zero. The dispersion equation is derived 
from this latter condition since the elements 
of the matrix are functions of k and co. 
Owing to the presence of the exp(-kq~z), 
exp(kqmz), sinh (kqrIz), and cosh (kqnz) 
terms in the integrated field equations, the 
dispersion equation obtained will only 
implicitly define o) as a function of k. To 
obtain an explicit formulation, the "viscous 
liquid" inequality (25) (Eq. [70]) is intro- 
duced into the dispersion equation. 

I c°[ ~ 1 (j  = I, II, III). [703 uJk 2 

Utilizing this inequality, the dispersion 
equation can be expanded in powers of 
oJ/~,Jk2; from this expansion, an explicit 
expression for co as a function of k can be 
obtained. Once this expression for co(k) is 
derived, it can then be substituted back into 
Eq. [70] to verify that the inequality is 
satisfied. In the following section, the 
dispersion equation for a symmetrical 
system is computed. The reason for initially 
considering this system is that it will il- 
lustrate the following important aspect of 
inequality [70]: When the dispersion equa- 
tion is expanded to first order in o~/vJk 2, 
the resulting expression is the same as 
would have been obtained had the Ov~/Ot 
and Ou]/Ot terms been neglected in the 
first-order equations of  motion (Eqs. [34] 
and [35]). This latter observation is then 

used in computing the dispersion equation 
(accurate to first order in co/vJk 2) of an 
unsymmetrical system. The validity of 
neglecting all terms of second order and 
greater in (o)/vJk 2) is discussed in Appendix A. 

The Dispersion Equation for a 
Symmetrical System 

As remarked in the Introduction, a sym- 
metrical film system is one in which gravity 
is neglected and in which the semi-infinite 
phases surrounding the film are iden- 
tical. Thus, in such a system ix '=  /21', 
p, = pro, q1 = qm, and O'u = Orl ~ 0". With 
these simplifications, the boundary con- 
dition at z = +-h/2 admits solutions for 
the bS(z,k) functions which are even (sym- 
metric) and odd (antisymmetric) functions 
of z. For the even solution set C7 = C5, 
C8 = C6, and C2 = C4 = 0; for the odd set 
C 7 = - C 5 ,  Cs = - C 6 ,  and C1 = C 3  = 0. 
Substituting these solution sets into the 
boundary conditions at z = h/2 yields a 
set of four linear, homogeneous equations 
in the four remaining unknowns. (The 
same four equations are generated if the 
sets are substituted into the boundary 
conditions at z = -h/2.) Upon setting equal 
to zero the determinant of the matrix of 
coefficients of these four equations, the 
following dispersion equations for the even 
and odd solutions are obtained. 

/~lk2 

+ 
4(/£II)2 ( /~I 

pn (X - qHy) 1 + ],~1i ( ¢  - 1) 

].£1 2 I 
-- (-"~) q )  + PII~-~(X + ~li) 

+ / z n - ~ z ( 4 X  
/zi pi ) 
/zn pn (X - ¢IY)(1 + ql) 

+ / z l  o9 ((1 + qr)(1 + qnXy) 

+ 2 X ( q ' -  1)) = 0 [71] 
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where, for the even solution 

l ( d I I  ) 
tO = tr - -.£g \ - - ~  + I ( h ) 

X--tan  

Y-- tan" qI' ) 

[721 

[73] 

[741 

and for the odd solution 

1 ( d H + i ( h ) )  [75] 
~ =  o- + k 2 d--h 

X = coth ( -~- )  [76] 

Y = coth ( @  qlI) . [77] 

Following the nomenclature proposed by 
Felderhof, the normal modes of the even 
solution set are termed stretching (ST) 
modes and those of the odd set are classified 
as squeezing (SQ) modes (Fig. 1). In the 
limit of infinite film thickness, F(h )  and I (h )  
tend toward zero (cf. Eqs. [30] and [65]) and 
all four of the hyperbolic functions (see Eqs. 
[731, [74], [76], and [77]) tend to unity. 

Consequently in this limit the dispersion 
equations for both the SQ and ST modes are 
identical and reduce to the dispersion equa- 
tion for waves on the interface between 
two bulk fluids. Furthermore, the limiting 
expressions for the SQ and ST dispersion 
equations as/,1 and p~ tend towards zero (a 
free liquid film) are equal to those derived 
by Sche (16) and Sche and Fijnaut (17). The 
extension to three dimensions involves only 
replacing k by (k=, + k=u) 1/2, where kx and k, 
are the wavenumbers in the x and y direc- 
tions, respectively (23). 

Expanding the ql, qll, and Y terms in Eq. 
[71] in powers of to/v~k 2 and retaining only 
first-order terms yields the following expres- 
sions for the dispersion equation of the SQ 
(Eq. [78]) and ST (Eq. [79]) modes. 

(.Os Q - -  

× l ) s o ( k , h , R )  [78] 

('/)ST - -  

where 

21,* H k2\  dh 

x f l sT (k ,h ,R )  [79] 

cosh ( kh ) + R sinh ( kh ) - 1 - khR  

(1 + R 2) sinh (kh) + 2R  cosh (kh) + kh(1 - R 2) 

cosh (kh) + R sinh (kh) + 1 + khR  
~-~ST 

(1 + R 2) sinh (kh)  + 2R  cosh (kh) - kh(1 - R 2) 

R -  /,i 

[80] 

[81] 

[82] 

These results for the first-order dispersion 
equations are valid for both short and long 
wavelength disturbance; previously derived 
first-order equations are valid only for long 
wavelength perturbations (2, 4, 6, 16, 
17). Equations [78] and [79] could also have 
been derived directly by neglecting the 
co/v~k 2 terms in the normal mode field 
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equation (Eq. [53]) and in the normal stress 
boundary conditions (Eqs. [59] and [63]). 
This latter procedure is equivalent to neg- 
lecting the Ou]/Ot and Or{lOt terms in the 
first-order equations of motion (Eqs. [34] 
and [35]) and is utilized in the next sec- 
tion to obtain the dispersion relation for an 
unsymmetrical system. 
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The Dispers ion  Equa t ion  f o r  an 
U n s y m m e t r i c a l  S y s t e m  

After neglecting the (o/uJk 2 terms in the 
normal mode field equation (Eq. [53]), the 
following expressions for the b~(z,k) func- 
tions are obtained upon integration: 

blt(z,k) = al cosh (kz)  + a2 sinh (kz)  

+ aaz cosh (kz)  + a4z sinh (kz)  [83] 

b~(z,k) = a5 exp( -kz )  + ac, z exp ( -kz )  [84] 

~In(z,k) = a7 exp(kz) + asz exp(kz) [85] 

where,  as in Eqs. [66]-[69], k has been 
res t r ic ted to posi t ive values and the 
boundary conditions at infinity (Eqs. [54] 
and [55]) have been used. Upon substitut- 
ing these integrated solutions into the 
boundary conditions at z = +_h/2 and then 
setting equal to zero the determinant of the 
resulting matrix of coefficients, the follow- 

ing two dispersion equations are obtained. 

k 
COl- [0 + 3'] [86] 

2g"3z 

k 
( o z -  [0 - y] [87] 

2/2r62 

where 

0 = _ _l [(X1 - -  qb)AI(R1,R2) 
2 

+ (Xa + qb)A~(Ra,R2) 

+ (X2 - qb)A,(R2,R,) 

+ (X2 + ~)A2(R2,R,)] [88] 

- / =  { 0  2 - ~ , 6 2 [ ( x ~  - ¢ ) ( x ~  + ~) 

"4- (Xl  4- ( I ) ) (22  - -  ( I ) ) ]}  1/2" [ 8 9 ]  

The variables appearing in the above equa- 
tions are defined below. 

1 [(coth (kh)  - ( - 1 )  n cosech (kh))(1 - (-1)nkh cosech (kh))  A.(~,~) = 

+ (fi + ak2h 2 cosech 2 (kh))  + fi~(coth (kh)  - kh cosech 2 (kh)  

+ a(1 - k2h ~ cosech 2 (kh)))  + (R1 + Rz)(coth 2 (kh)  - ( - 1 ) "  coth (kh)  

x cosech (kh)  - ( - 1 ) ' k h  cosech (kh))  + R1R2(2 coth (kh)  

- ( - 1 ) "  cosech (kh)  - ( -1 )~kh  coth (kh)  cosech (kh))] (n = 1, 2) 

1 
81 = ~ [(R1 + coth (kh)) (R2 + coth (kh))  - cosech 2 (kh)(1 + khR~)(1 + khRz)] 

32 = (1 - k2h 2 cosech 2 (kh))(1 + R~R~) + (coth 2 (kh)  + k2h z cosech 2 (kh))(R~ + R~) 

+ 2 coth (kh)(R1 + R2) + 2R1R2(1 + coth 2 (kh)  + (R1 + R2) coth (kh))  

[90] 

[91] 

[92] 

~ I  /.£II1 

R 1  - ; R2 - ILLII ~.{JI 

Xl = O'u + _ _ _  + _ pI)g 
dh 

X2 = O'I 4- - -  - -  4- _ p l l ) g  
dh 

cb = I(h) /k  2. 

These results are new in that explicit 
[93] first-order dispersion equations for an 

unsymmetrical  film system have yet to be 
derived; they lead to dispersion equations 

[94] for a symmetrical  system and for a film 
on a solid substrate when appropriate limits 
are taken. For  the parameters of  a sym- 

[95] metrical system (i.e., cq = or,, /x~= /x n~, 
g = 0) Eqs. [86] and [87] reduce to Eqs. 

[96] [781 and [791. Fur thermore,  from the equa- 
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tions for an unsymmetrical system, the 
dispersion relation for a wetting film (i.e., a 
film on a solid substrate) can be derived by 
computing the limiting expressions of Eqs. 

[861 and [87] as R2 tends to infinity (Fig. 1). 
Depending on the sign of the limR--,~ 0, one 
of the above  two equations (either [86] or 
[87]) simplifies to oJ 2 = 0 as R2 tends to 
infinity and the other reduces to: 

where 

O )  - -  

=(k,h,R1) = 

2 /z l  I O'u + ~-~ - -  

d I I + ( p n - p I ) g ) )  ~ ( k ' h ' R 1 ) d h  [971 

sinh (kh) cosh (kh) - kh + Rl(sinh 2 (kh) - k2h 2) 

(R1 sinh (kh) + cosh (kh)) 2 + k2h2(1 - R~) 
[98] 

Equation [97] is analogous to the result ob- 
tained by Jain and Ruckenstein (11), except  
for the gravitational term which was neg- 
lected in their analysis. 

R E S U L T S  A N D  D I S C U S S I O N  

In this section, the stability character- 
istics of symmetrical and unsymmetrical 
systems are examined, both in the long and 
short wavelength limits. Wherever POssible, 
explicit asymptotic results are obtained 
from the general dispersion relations (Eqs. 
[78], [791, [861, and [87]) derived in the 
previous section. The results are, then, 
used to explain available experimental 
observations. 

Symmetrical Systems 

In this subsection, first the asymptotic 
forms of the dispersion equations for the 
squeezing and stretching modes are derived 
for long wavelengths (i.e., for wavenumbers 
satisfying the inequality kh ~ 1). Then, the 
complete dispersion equations (Eqs. [78] 
and [79]) are analyzed numerically. 

(a) Asymptotic relations. A necessary 
prerequisite for this asymptotic develop- 
ment is to obtain an expression for I(h) as 
k --~ 0. Such an expression is obtained in 
Appendix B and is given here in terms . 
of II (Eq. [32]): 

dFl k2h 2 
I(h) = 

dh 2 
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× II(h) + __ II(v)dv + O(k 4) 
h h 2 

(k ---> 0). [99] 

For a symmetrical film system Eq. [99] can 
be written in terms of the film tension A, 
where 

A = 20, + hII(h) + H(v)dv. [100] 

Combining Eqs. [99] and [100] yields: 

I(h) - dII + k Z ( ° -  -~) + 

(k ~ 0). [lO1] 

With the aid of the asymptotic develop- 
ment for I(h), the dispersion equations 
can easily be simplified for the long wave- 
length limit. 

Expanding the hyperbolic functions in the 
defining relations for lISQ and f~sr in a 
Taylor series in powers of kh yields the fol- 
lowing approximate equations for coSQ 
and COST: 

(OSQ - ~ - - - _ _  
k3h21 A 2 dII)  

)< 

[ 1 + kh R 

[ 12 

k 3ha R2 
k h + R +  12 

[~02] 
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k3h2(2o 2dn) 
8 ~  t 2 k 2 d-h 

1 
for - - > >  R >> kh [103] 

kh 

OAtST ~ -- _ _  
k 

21 
4 tx n 

x I k3h3 
12 

-q 
1 + khR I 

J + R + khR 2 

[104] 

k 
- -  A (R >> kh). [105] 
4t2 

In the above equations, only the first two 
terms in the asymptotic development of 
I(h) are used. From Eqs. [102] and [104], 
the criteria for stability of the SQ and ST 
modes in the long wavelength limit can be 
formulated. 

For the squeezing mode, the condition for 
marginal or neutral stability (o~ = 0) is 

II(v)dp 

2 dH 
- - -  0.  [106] 

k 2 dh 

defined by: 

1 hH(h) 1 Ih ° 
o- 2 

The value of k which satisfies Eq. [106] is 
termed the critical wavenumber (kc). If 
London's law (wi,~(r) = -Ci ,F -6) is utilized 
for the intermolecular potential, H(h), cal- 
culated from Eqs. [30] and [32], has 
the form 

A 
H(h) - [1071 

67rh 3 

The constant A is the Hamaker constant of 
the film system and is defined as: 

A = Amn + AII,II - Aim - Ali,rii [108] 

where 
Ai,~ = ~ 2 p i p J C i , j .  [109] 

With H(h) defined by Eq. [107], the follow- 
ing equation for the critical wavelength 

he (he = 27r/kc) is obtained: 

[ ~Ah~4~] 1 /2[  _ _  Z ] 1/2 
he = 27r 1 + 877"0"h 2 [110] 

Using typical values for o- (10 -3-10 -2 N/m), 
A (10 -2° J) ,  and h (10 nm) yield values for 
he which satisfy the long wavelength re- 
striction (k~h ~ 1). For ~ > he, o~sQ > 0 
and the SQ mode is unstable; alternatively, 
for h <  he, O~SQ<0 and the SQ mode 
is stable. 

Computer simulations of COsQ -1 (= ZsQ) as a 
function of X for h > Xc and for values of 
R = 1, 2, and 10 are given in Fig. 4. These 
simulations indicate the existence of an 
inflection point minimum of XsQ. An analyti- 
cal expression for the wavelength at which 
-this minimum occurs is obtained by differ- 
entiating the expression for ~OsQ (Eq. [78]) 
with respect to k and then obtaining the 
roots of the equation doJsQ/dk = 0 which 
satisfy the long wavelength limit. For values 
of ke such that koh ~ 1 and 1/kch > R  
> kch, the wavelength (termed the domi- 
nant wavelength and denoted by Xd) at 
which the inflection point occurs is given by: 

h d ~ 31/2h c. [111] 

In the limit, R ~ 0, the dominant wave- 
length tends to infinity. The minimum 
value of rsQ, since it represents the largest 
value of COsQ, will dominate the growth of 
instabilities in the linear regime of films 
vibrating in the squeezing mode. 

The dispersion equation given by Eq. 
[105] is a new result. Equations [102], 
[103], [110], and [111] are, however, identi- 
cal with the results of Vrij et al. (when 
expanded to first order in o~) except for the 
term 1/2H(h)h + 1/2 f~ H(u)du which, for 
II(h) =-A/67rh  3, is -A/8~rh 2. This term 
represents the second-order term in the 
asymptotic development of I(h) as k --~ 0 
(see Eq. [B-12]); the term is not present in 
the paper of Vrij et al. because their work 
uses the approximate disjoining pressure 
approach to formulate the influence of the 
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van der Waals interaction on the film 
stability (see the Introduction). 

From Eq. [104], the condition for mar- 
ginal stability of the stretching mode is A 
= 0. The system becomes unstable to the 
ST mode when A < 0. With II(h) defined 
by Eq. [107], the expression for the film 
tension is: 

A A 
- o "  - ~ [ 1 1 2 ]  

2 87rh 2 

Thus for systems in which o- < A/87rh 2, the 
ST mode is unstable, and conversely, if o- 
> A/8rrh 2, the ST mode is stable. As re- 
marked earlier, the Hamaker constant A is 
on the order of 10 -2o J; using a typical 
value for h of 10 nm yields a value for 
A/87rh 2 which is of the order of 10 -6 N/m. 
Thus the stretching mode will become 
unstable only for systems with extremely 
low interfacial tensions, such as the cell 
membrane. 

Note that the condition for marginal 
stability, Eq. [112], is independent of the 
wavelength. It should be interpreted with 
caution. This condition was derived using 
the long wavelength approximation for 
I(h) ,  and, therefore, cannot be used to rule 
out the possibility of a critical wavelength 
in the short wavelength limit. As a matter 
of fact, we will show numerically in the next 
subsection that a critical wavelength exists 
for the stretching mode in the short wave- 
length limit, and convince the reader that 
restricting the analysis to long wavelengths 
can, sometime, lead to misleading or in- 
complete results. 

For the stretching mode, the dominant 
wavelength, in the long wavelength limit, 
is given by 

27rh 
hd -- [113] 

(6R)1/3 

for values of R much less than one (R ~ 1). 
Thus for the ST mode, a dominant wave- 
length will exist for long waves only for 
values of/xx//z u which are much less than 
one. A significant, new conclusion evident 
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normalized with respect  to r0. % is equal  to r evaluated 

at h = ha and R = 1 for the SQ mode. [h = 50 mn, 
cr = 0.05 N/m, A = 10 -2o J , / z  H = 10 -~ kg/m-sec.] 

from Eq. [113] is that the dominant wave- 
length of the ST mode is a function of the 
hydrodynamic parameter R (the ratio of 
viscosities) and the film thickness h. For 
the SQ mode (cf. Eq. [111]), however, )td 
is independent of R and is a function of 
h, or, and the intermolecular interaction 
parameter A. 

Using parameter characteristics of a 
biological membrane (R = 10 -G and h 
= 10 nm), one finds that hd is in the order of 
1 /xm, which is the characteristic diameter 
of microvilli (13). The present analysis also 
suggests that the rate of growth of perturba- 
tions, o)ST, is inversely proportional to 
membrane viscosity (Eq. [104]). Conse- 
quently, cells with a low value of membrane 
viscosity will form villi at a rate faster than 
cells with large viscosity. As a matter of 
fact, several investigators have suggested 
that the membrane of a neoplastic cell is 
more "fluid" (less viscous) than that of a 
normal cell. This increased growth rate, due 
to a low viscosity, could account, at least 
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in part ,  for  the greatly increased formation 
of  villi in malignant cells compared  to those 
in normal  cells (13). 

The stretching mode instability of  a 
membrane  can also explain ingestion and 
phagocytos is  phenomena ,  in which a bio- 
logical membrane  bends to engulf the extra- 
cellular matter .  Deformat ion  of  a biological 
membrane  is also a key  step in cellular 
movement .  Since t ime constants  of  these 
processes  are not available,  it is not pos- 
sible to compare  quanti tat ively the results 
of  our  analysis with exper imenta l  observa-  
tions, however ,  qualitatively our analysis 
offers plausible explanations of  these com- 
plex biological phenomena .  

(b) Numer ica l  simulations.  The cell 
membrane  provides an example  of  a sys tem 
in which both the squeezing and stretching 
modes  can become  unstable.  Therefore ,  
we will use paramete rs  characterist ic  of  
the cell membrane  in these numerical  
simulations using Eqs. [78] and [79]. The 
interfacial tension of  the cell membrane  
is characterist ical ly small (28), with typical 
values ranging be tween 10 -6 and 10 -3 N/m. 
Fur thermore ,  extending into the intra- and 
extracellular fluids of  the membrane  are 
electrical double layers:  These  double 

layers have a destabilizing effect and can 
be at least qualitatively accounted for  in 
this analysis by  adding to the interfacial 
tension (o-) the double layer  tension ((ra0 
(29). The double layer tension is of  the order  
of - 1 0  -3 N/m for biological sys tems (13), 
and it can reduce the value of both o-u and 
o-i considerably.  Therefore ,  first, we will 
examine the role of  interfacial tension (o- 
= O-u = o-0 on the stability characteris t ics  
of  a membrane .  Specifically, we will ex- 
amine the effect of  cr on Xo for both squeez- 
ing and stretching modes.  

Owing to the posit ive definite nature of 
~SQ and ~sT (Eqs. [78] and [79]), critical 
wavenumbers  kc (=2~r/X¢) must  satisfy the 
following equations: 

A 
o- 

2~rke2,sQh 4 

A 
- - - K 2 ( k ~ , s Q h )  = 0 [114] 

4~'h 
and 

A 
(Y 

2zrk~,sTh 4 

A 
+ - - K z ( k c , s w h )  = 0 [115] 

4~-h 2 

where Ks is the modified Bessel  function 
of second kind. In deriving Eqs. [114] and 
[115] f rom Eqs. [78] and [79], we have used 
Lo ndon ' s  law (wi,~ = - C ~ , / r  6) to obtain 
express ions  for I I ( h ) ( = - A / 6 z r h  3) and 
I (h ) (= -(A/4~rh2)k2K2(kh )). Since K~(kh ) is 
a monotonical ly  decreasing, posit ive defi- 
nite function o f k h ,  a value ofkc will always 
exist for the squeezing mode for all values 
of  or. However ,  kc will exist for the stretch- 
ing mode only when o - <  A/8~rh 2 (or, A 
< 0). The film will become  stable to the 
stretching mode for A > 0 (Eq. [112]). In 
addition, if there is a critical wavenumber  
for the stretching mode,  then one can show 
that for a given value of o" 

ke,sQ > ke,sT o r  ke,sQ < he,ST- [116] 

This condition can be obtained by subtract-  
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ing Eq. [114] from Eq. [115], and realizing 
that K~(kh) is positive-definite. 

The dependence of hc/h on tr for squeez- 
ing and stretching modes is plotted in Fig. 5. 
Note  that he, sT ceases to exist after o- = 4 
x 10 -6 N/m when A > 0. When both the 
squeezing and stretching modes are un- 
stable, he, ST > hc,sQ, though the difference 
in h~,sr and h~,so is small. It must be pointed 
out here that hc,sQ/h agrees exactly with 
the value calculated using Eq. [110] for  
hc/h > 10. As mentioned in the previous 
section, it is not possible to calculate h~,sT 
using the asymptotic  expression (Eq. [ 112]). 

Now,  it is worthwhile to examine the 
stability characteristics of a film to perturba- 
tions of  wide range of  wavelengths .  

In Fig. 6 is plotted computer  simulations 
of O ) s o  - 1  ( = T S Q )  and O-}ST - 1  (=TST) as a func- 
tion of h/h for 1 -< h/h <- 3000. The maxi- 
mum wavelength considered (30 /zm) is a 
typical value for the c i rcumference of  a cell 
membrane.  A value of  I0 -° N/m was used 
for the total tension (cr + o'd0. As expected,  
the numerical simulations shown in Fig. 6 
are in exact  agreement  with the asymptot ic  
results obtained for h/h >> 1 (Eqs. [102 ] and 
[104]). They,  however ,  also lead to some in- 
teresting and new results in the limit h/h 

1. Most importantly,  we observe a critical 
wavelength for the stretching mode, which 
was not obvious from the long wavelength 
analysis (Eq. [112]). Specifically for these 
parameter  values, h¢/h = 1.5 for the squeez- 
ing mode, and hc/h ~ 1.75 for the stretch- 
ing mode. The minimum value of  vsw occurs 
at hd/h ~ 345, exactly as predicted from 
the long wavelength analysis (Eq. [113]). 
While it is not obvious from Fig, 6 that ~sQ 
exhibits a minimum similar to those shown 
in Fig. 4 for R = 1, 2, and 10, its existence 
can be proved numerically by plotting ~- 
versus h/h for values of h/h > 104. As a 
matter  of fact, d2"rsQ/dh = n e a r  hd increases 
as R increases. This shallow minimum in 

~0 ~ 
II ' ' b. 

IO 2 0- '  

STRETC H ING 
MODE ,o, ,o-,'°-' 

i ,  

I0-' n I0 -4 

' Lc, 75) '° t~ ,o~ ~o' 
i 1 . 5  ' ~ . /h  

FIG. 6. Dependence of 1/to (=T) on h for SQ and ST 
modes using biological parameters as calculated from 

Eqs. [78] and ['79] with Eq. [107] used for II(h). [h 
= 10 nm, (r = 10 -6 N/m, A = 10 -20 J, /x H= 103 kg/ 
m-sec, t~ I = 10 -3 kg/m-sec.] Note that the minimum 
value of Tsw is four orders of magnitude less than the 
minimum value of rso. 

Finally, the results indicate that both the 
SQ and ST modes are unstable for these 
parameter  values and that the growth of 
the instabilities is dominated by the stretch- 
ing mode since the minimum value of  rsT 
is f o u r  orders of  magnitude less than the 
smallest value of  ~'sQ- Physically, these 
simulations imply that a biological mem- 
brane will bend more readily to form micro- 
villi or  to ingest external material via 
phagocytosis  than have "sausage type"  
local variation in its thickness as a result 
of  instability (Fig. 1). 

Unsymmetrical Systems 

The study of  the stability characteristics 
of  unsymmetrical  films is difficult because 
of  the complexity of  the general dispersiort 
equations. A convenient  starting point for  
such a study is the examination of the modal 
forms of  the first-order interfacial displace- 
ment functions ~:a and r/1. The modal forms 

the ~sQ versus k/h curve is expected since of  ~:1 ands1  are characterized by the ampli- 
for a biological membrane,  R (=10 -6) is t u d e  ratio K and the phase difference ~b 
much less than one. between the sinusoidal vibrations of  the 
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tz ~ = t6  ~ = pY~ = 10 ~ kg /m-sec ;  h = 10 ~ ~m.]  

interfaces of the film. From the modal 
expressions for sc~ and "01 (Eq. [48]), it is 
evident that 

_ [~l . ( l m [ ~ / ~ ]  1 K ' 6 = arctan \ ~ /  " [1171 

The ratio #/~ is equal to b~(h/2)/buI(-h/2) 
(cf. Eqs. [40] and [45]). An analytical 
expression for bI(h/2)/b1H(-h/2) can be 
obtained from the integrated field equations. 
To simplify the calculations, all terms 
containing oJ/v~k 2 are neglected in the normal 
mode field equations and boundary condi- 
tions (Eqs. [53]-[63]). With this approxi- 
mation, the ratio bI(h/2)/bm(-h/2) is, from 
Eqs. [84] and [85], equal to: 

h 

2 1 
- + [118] 

a 7 h as a~ h as 

a5 2 a5 a6 2 a6 

From Eq. [118], it is clear that to deter- 
mine the variables K and ~b, expressions 
for certain quotients of  the integration 
constants are requi red ,  These expressions 
are obtained through the matrix of  coef- 

ficients of  the boundary conditions; details 
of  the calculations are provided elsewhere 
(15). Numerical  computations indicate that 
the variables ~: and ~b depend on the inter- 
facial tensions 0-] and 0-u and the inter- 
molecular  forces.  When the interface 
tension (0-] or 0-~) is large, the resu l t  is a 
decrease in the amplitude of the disturb- 
ance. When intermolecular forces dominate 
the film dynamics,  the result is an increase 
in the amplitude of  perturbation. In Figs. 7 
and 8 are illustrated the variation in K with 
changes in O-u (o'1 was held constant  in the 
simulation) for the t w o  modes of  vibration 
described by Eqs. [86] and [87]. For  o-i 
= 0.05 N/m, h = 100/zm, and h = 10 nm, 
q5 for one mode is always equal to 7r (a 
squeezing vibration) and ~b for the other  
mode is always equal to 0 (a stretching 
vibration) (Fig. 7). For  the mode cor- 
responding to a squeezing vibration (6 
= 7r), • decreases as O-u increases. This is 
an expected result since the interfacial 
tension is inversely proportional to the 
deformability of  an interface. For  the mode 
corresponding to a stretching vibration (6 
= 0), K is independent of  0-u and remains 
equal to o n e  For--o-1 = 10 -8 N/m, X = 50 
nm, and h = 10 nm, 6 for o n e  mode is 
always equal to 0 (a stretching vibration) 
and ~b for the other  mode is equal to 7r (a 
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FIG. 8. D e p e n d e n c e  of  K on  Cru in a low su r face  

t en s ion  s y s t e m  for  the  two  m o d e s  of  v i b r a t i o n  de- 
s c r ibed  by  Eqs .  [86] and  [87] w i t h  Eq .  [107] u s e d  
for  I I (h) .  [h = 10 nm,  cr] = 10 -6 N/m,  A = 10 zo j ,  
/x I = /z m = 10 -a kg /m-sec ,  /61 = 103 k g / m - s e c ,  ~ = 50 

rim.] N o t e  t h a t  for  ou > 2.5 × 10 -6 N/m,  b o t h  m o d e s  
of  i n s t ab i l i t y  a re  s t r e t c h i n g  v i b r a t i o n s  (6  = 0). 
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squeezing vibration) up to a certain value 
of  O-u ( - 2 . 5  × 10 -6 N/m) and beyond that 
value of  surface tension, 4) becomes zero 
again (Fig. 8). Thus, an unsymmetric  
membrane can have + = 0 for both modes 
o f  vibrat ion depending upon the values of  
surface tensions and wavelengths (Fig. 8), 
In this case, K decreases as 0.u increases 
at large values of O-u as expected. At low 
values of  O-u, intermolecular forces lead to 
enhanced attraction at t h e  crests of per- 
turbations causing the amplitude ratio to 
increase (Fig. 8). Numerical simulations 
carried out for disturbances of  various 
wavelengths showed similar trends. It must 
be pointed out here that in all these simula- 
tions the phase angle, ~b, was either 0 or ~r; 
no other values of  4) were obtained since 
the growth coefficient, oJ, was always real. 

Since the growth of  disturbances, follow- 
ing the onset of  instability, is governed by 
the dominant wavelength, h0, the la t ter  was 
evaluated numerically as a function of  ~u 
for a fixed value of oq (Fig. 9). In these 
simulations parameters characteristic of a 
biological membrane were used to study the 
role of interfacial tension asymmetry  on 
the membrane deformation. Since the 
dispersion equations for the unsymmetric  
system a re  complex, specific analytical 
generalizations are not possible. However ,  
simulations shown in Fig. 9 can easily be 
interpreted if one recalls that the value 
of  A / 8 ~ h  2 is 4 × 10 -6 N/m. When ei ther  
o-1 or 0.u is less than A/87rh 2, one would 
expect the stretching mode to be the domi- 
nant one on the basis of  our analysis of  a 
symmetric system (Fig. 6). This is precisely 
what we  observe  in Fig. 9. When 0.~ = 10 -6 
N/m, A/8zrh 2 is always greater than 0.1, and 
the dominant mode is always the stretching 
vibration. When o-1 -- 10 -~ N/m, the domi- 
nant mode is the stretching vibration until 
0.~ = 4 × 10 -6 N/m, and thereafter the 
dominant mode is the squeezing vibration. 
In addition, when o-1 = 0.u = 10-6 N/m, 
ha/h is equal to 350, as shown in Fig. 6. 
When 0.u = o'1 = 10 -5 N/m, 0" is greater 
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FIG. 9. Dependence of A.d/h o n  O'u for fixed values 
of o- 1 for the two modes of vibration described by 
Eqs. [86] and [87] with Eq. [107] used for II(h). [h 
= 10 nm, A = 10 -2°J, /z ~=/z xn= 10 -3 kg/m-sec, 
/z ~l = 103 kg/m-sec.] Note that for ~1 = 10 -5 N/m, the 
dominant mode is the stretching vibration for ~ru 
< 4 × 10 -6 N/m, and the squeezing vibration for 
Ou > 4 × 10 -6  N / m .  

than A/8zrh 2, and the stretching mode is 
stable. In this case, the dominant mode is 
squeezing mode, and ka/h is equal to 650. 

Figure 10 shows the amplitude ratio, Ka, 
at the dominant wavelength as a function of 
0.u for the same fixed values of  0.1 (10 -6 and 
10 -~ N/m) as in Fig. 9. Consider first the 
case when o-1 = 10 -6 N/m and the stretching 
mode is dominant for all values of  0.u. The 
graph shows a critical behavior at 0.u = 7 
X 10 -6 N/m: for 0.u < 7 × 10 -6 N/m Ka 
= 1, while for 0 . u > 7  × l0 -6 N/m Ko 
decreases monotonically with increasing 
O-u, a logical result. Note also that this 
same critical value of  O-u signals the rapid 
decline in hd (see Fig. 9). A possible explana- 
tion for this change in the system char- 
acteristics is the fact that the critical value 
of  0.u (7 × l0 -6 N/m) is just greater than 
A/8,n-h 2 (4 x 10 -6 N/m). This same phenom- 
enon also occurs in the o-1 = 10 -~ N/m 
simulation, but right at 0.u = A/8~rh 2 =  4 
× l0 -6 N/m. After this value of 0.u, both 
0.u and o'1 are greater than A/8zrh 2, and 
consequently,  as explained previously, the 
squeezing mode begins to dominate. 

While experimental data for unsym- 
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metrical systems are not available, the 
results we have obtained can, perhaps, 
suggest a mechanism which a cell uses to 
transmit information across its membrane. 
For instance, let us assume that a chemical 
reaction in the extra- or intracellular fluid 
causes the surface tension of one of the 
interfaces of the membrane to decrease to 
a value that the membrane becomes un- 
stable. Following our analysis, we would 
expect that due to asymmetry in the surface 
tension, the amplitude ratio of disturbances 
(Kd) may not be equal to one. The extent 
of deviation from one will depend upon the 
asymmetry in the system, and will char- 
acterize the event which has occurred in 
the intra- or extracellular fluid. Thus, 
unequal deformation of the membrane may 
be one possible mechanism by which a cell 
transmits or receives information from 
its surroundings. 

CONCLUSIONS 

The stability of thin liquid films has been 
studied to small perturbations using the 
body force approach. The analysis is more 
general than previous ones because it 
accounts for the difference in the inter- 
facial tensions of two faces of the film and 
difference in the viscosities of the bounding 

media; it is complete because it is valid 
for both short and long wavelengths; and, 
it is systematic because it accounts for the 
effect of corrugations of the interface on 
the body force. 

When the bounding phases are identical 
and gravity is neglected (symmetrical case), 
the dispersion equations suggest two modes 
of instability: squeezing and stretching 
vibrations (Fig. 1). In this case, analytical 
expressions are derived for the critical 
and dominant wavelengths, and numerical 
simulations are obtained for a wide range 
of wavelengths. The results indicate that for 
parameters characteristic of a biological 
membrane, the growth of the perturbations 
is dominated by the stretching mode. 
Physically, these simulations suggest that a 
biological membrane will bend more readily 
to form microvilli or to engulf external 
material, than have local variation in its 
thickness as seen in a squeezing vibration. 

When the interfacial tensions of the two 
faces of the membrane are not identical, 
the amplitude ratio of disturbances may 
not be equal to one. We suggest that this 
deviation of the amplitude ratio from one is a 
possible mechanism which a cell employs 
to amplify or dampen a message across 
its membrane. 

Finally, contrary to previous assertions 
(16, 17), for most cases of practical interest, 
the acceleration terms in the equations of 
motion can be neglected in a linear stability 
analysis of thin liquid films (Appendix A). 

APPENDIX A 

The objective of this appendix is to 
discuss the admissibility of neglecting all 
terms of second order and greater in o9/ 
uJk 2 to obtain the first-order dispersion 
relations. The validity of this procedure 
with respect to the SQ and ST dispersion 
equations will be discussed first. For the 
wavelength ranges used in the Simulations 
exhibited in Figs. 4 through 10, the param- 
eter oJ/u~k ~ (j = I, II, III) was computed 
and found to be much less than one. How- 
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ever, as is evident from the approximate 
dispersion equations of the SQ and ST 
modes (Eqs. [102]-[105]), the limk-~0 
to(k)/k 2 does not converge. Consequently 
for extremely long waves, the approxima- 
tion to/v~k 2 would not be valid. Neverthe- 
less, the values ofk  at which to(k)/k 2 begins 
to diverge usually represent wavelengths 
much larger than the characteristic radii of a 
particle in a dispersion (100/xm) or of the 
circumference of a biological cell (10 /~m) 
and are therefore not of interest. 

Numerical simulations also indicate that 
the parameter to/v~k 2 is not less than one 
for values of R ~ 1 and for values of the 
film viscosity less than or equal to the 
viscosity of water (10 -3 kg/m-sec). For 
these limiting cases (of which a flee film 
is a most important example), at least the 
second-order term must be retained in 
the expansion. 

The verification that the parameter to/ 
vJk 2 is much less than one is not a sufficient 
condition for neglecting the second-order 
and greater terms of this parameter because 
the coefficients of these higher powers 
of to/~k 2 may be large (especially in the 

k 
COST - -  - -  A 

4~ll k3ha (1 + 3 
12 \ 

In general, these conclusions can be ex- 
tended to the unsymmetrical system, and 
therefore the first-order dispersion relations 
for this system (Eqs. [85] and [87]) are valid 
(in the long wavelength limit) when to/v~k 2 

1 and R1, R2 ~ kh and when inequality 
[A-l] is satisfied for R1 and R2 not much 
greater than kh. 

APPENDIX B 

The objective of this appendix is to ob- 
tain an asymptotic relation for l (h )  as 

long wavelength limit). Therefore the exact 
dispersion relations were expanded to third 
order in ¢o/vJk 2 and kh. The results indicate 
that the neglect of the second and third 
powers of tolvJU (when tolv~k ~ ~ 1) is un- 
conditionally valid for the SQ mode; for the 
ST mode this procedure is valid without 
qualification only for R >> kh, but it is only 
admissible otherwise when 

4R v - ~  l (  k3h3 
\ 12 

and 

3 to ~ 1 R ~ - -  . [A-l] 
k2h ~ 12 

Inequality [A-l] is satisfied when the kine- 
matic viscosity of the fluid comprising the 
film is very large. In particular, for the 
stability of the stretching mode of the cell 
membrane (Fig. 6), inequality [A-l] is 
satisfied because of the large value (103 kg/ 
m-sec) of the viscosity of the membrane. 

When R is not much greater than kh and 
inequality [A-l] is unsatisfied, the second- 
order term toh, Hk ~ must be retained in the 
long wavelength limit dispersion equation 
for the ST mode; with this correction Eq. 
[104] becomes: 

1 + khR [A-2] 

toST I + R + khR 2 
u i l k 4 h  2 / 

k ~ 0. Such a relation can be obtained by 
substituting for the cos (khfi ')  in the defining 
relation for I(h)  (Eq. [65]) the following 
identity: 

( kh fl') 2 
cos ( kh fl') = 1 

2 

+ ( c o s ( k h f l ' ) - 1  + (khf i ' )2)  . 

With the above substitution, Eq. 
becomes: 
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The first integral on the right-hand side 
(rhs) of  Eq. [B-2] can be simplified by 
transforming to polar coordinates:  

f_ L h 2 w(h (1  -4- /~,2 A- ('2)1/2)d('d~' 

= 2~'h 2 ~(h(1 + r2)'2)rdr. [B-3] 

Defining a new variable v by the relation 
~, -- h(1 + r2) 1/2 and changing the variable of 
integration in the integral on the rhs of Eq. 
[B-3] from r to v yields: 

h 2 ~(h(1 + fi,2 + ~,2)i/2)d~,dfi, 
ce 

= 27rv~(v)d~, - dII  [B-4] 
dh 

where the second equality in Eq. [B-4] fol- 
lows from Eq. [32]. 

After utilizing the same two transforma- 
tions to rewrite the second integral on the 
rhs of  Eqs. [B-2], the following expression 
is obtained: 

-- l k2h4  L L J~t2 2 

k2h 2 
X w(h( l  -}- fit2 _]_ ~,2)a/2)d,~,d[ 3, _ 

4 

dII  
x 2~-v3~(v)dv + . [B-5] 

dh 

Integrating by parts twice the integral on 
the rhs of  Eq. [B-5] yields: 

Ii ~ 27rv~(v)dv _h 2 dH = + 2hH(h) 
dh 

+ 2 II0,)dv [B-61 

subject to the condition that 

lim c~4~(a) = 0. [B-71 

x if(h(1 + fi'2 + ~'2)1/2)d~'d~'. [B-2] 

Combining Eqs. [B-5] and [B-6] results in 
the  following: 

X w(h(1 ~- ~,2 ~_ ~ , 2 ) l / 2 ) d ~ t d ~ ,  _ 
k2h 2 

2 

× + - -  II(u)dv . [B-8] 
h h 2 

For  the last integral on the rhs of Eq. 
[B-2] it can easily be shown by repeated 
use of  L 'H6pi ta l ' s  rule that 

h2 ~ L (c°s ( k h f i ' ) - 1 +  ~)(khfi')2 

x ~(h(1 + fi,2 + ~,2),12)d~,dfi, 

= O(k 4) [B-9] 

when the integral A defined by 

x #(h(1 + fi,2 + ~,2)~/2)d~,dfi, [B-10] 

is bounded. In Eq. [B-9], the upper  case O 
is the "large O "  order  symbol (26). If 

lim c~5+N~(a) = 0 3 > 0, [B-11] ~----> c~ 

then the boundedness  of A is guaranteed 
from the '*tx t es t "  for convergence (27). 
Equation [B-11] is a stronger condition on 
the composite intermolecular potential ~( r )  
than Eq. [B-8] and therefore this asymptotic  
development  is restricted to intermolecular 
potentials which fall off  faster than r ~+~, 
6 > 0. In particular, London ' s  law (wi.~(r) 
= -Ci.j/r ~) satisfies Eq. [B-11]. 

Combining Eqs. [B-3], [B-8], and [B-9] 
yields: 

dH k2h 2 
I(h) = - - 

dh 2 
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x + -- H(v)dv 
h h z 

+ O((k) ')(k ---> O) 

subject to Eq. [B-I1]. 

[B-12] 

APPENDIX C: NOMENCLATURE 

A Hamaker constant of the film 
system, defined by Eq. [108] 

Aiz Hamaker constant defined by 
Eq. [109] 

Ci.j Interaction constant (between 
molecules i and j) in London's 
law 

D Differentiation with respect to z 
F Function defined by Eq. [29] 
F~,~ Function defined by Eq. [2] 
g Acceleration of gravity ~c 
h Film thickness 
hi, h2 Lengths defined in Fig. 2 X 
H ~.. H ~.. Functions defined by Eqs. [3] i 3, ~,3 

and [4], respectively /~ 
I~,j Function defined by Eq. [52] v 
I(h) Function defined by Eq. [64] 
Im Imaginary part of a function II 
k Wavenumber of disturbance 
p Pressure 
P Gravity-excluded total force p 

density (defined by Eq, [26] o- 
for the base state) cral 

qI, qn, qm Variables defined by Eq. [69] ~- 
1 Q~,J, Q]z Functions defined by Eqs. [21] 

and [22], respectively qb 
R1, R2 Viscosity ratios defined by Eq. 

[93] o~ 
R Viscosity ratio for a symmetri- 

cal system, defined by Eq. 
[821 

Re Real part of a function 0 
SQ Squeezing mode 1 
ST Stretching mode 
t Time c 
u x component of the velocity d 

vector 1 
u,z(r ) Intermolecular potential of two 

molecules i and j separated u 
by a distance r 

/2 

w~Ar) 

~v(r) 
W 
X 

X 

Y 

Z 

A 

E 

z component of the velocity 
vector 

u~,j(r) divided by the masses of 
molecules i and j  

Function defined by Eq. [31] 
Excess van der Waals potential 
Spatial coordinate (see Fig. 3) 
Variable defined by Eq. [73] or 

[76] 
Variable defined by Eq. [74] or 

[77] 

Spatial coordinate (see Fig. 3) 
Film tension defined by Eq. 

[100] 
Dimensionless arbitrary param- 

eter (much less than one) ap- 
pearing in Eqs. [9]-[14] 

Perturbation in lower interface 
Interfacial amplitude ratio de- 

fined by Eq. [117] 
Wavelength of disturbance (X 

= 27r/k) 
Viscosity 
Kinematic viscosity (v = ~/P) 
Perturbation in upper interface 
Disjoining pressure of a plane 

parallel, unbounded film (de- 
fined by Eq. [32]) 

Mass density 
Interfacial tensions 
Double layer tension 
Reciprocal of frequency of mo- 

tion (r = 1/oJ) 
Phase difference defined by 

Eq. [117] 
Frequency of motion 

Subscripts 

Indicates base state value 
Indicates first-order approxi- 

mation 
Indicates critical value 
Indicates dominant value 
Indicates a property of the lower 

(II-III) interface 
Indicates a property of the upper 

(I-II)  interface 
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i , j  Scripted quantity is a char- 
acteristic of the interaction 
between molecules i and j  

I 

II 
III 

Superscripts 

Indicates upper semi-infinite 
phase 

Indicates film volume 
Indicates lower semi-infinite 

phase 
Preexponential function (see 

Eq. [481) 
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