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1. Introduction

Thin liquid f£ilms sandwiched between two fluids, or between a fluid and
a solid surfgce are encountered in several industrial and biological sys-
tems. In flotation, the thinning and rupture of the liquid film between
particle and bubble can be the rate determining step of the process.l
Films of this type are also important in detergency. When an oil covered
surface (e.g. a fabric material) is immersed in aqueous surfactant solu=-
tion, it is necessary to destabilize the oil film by causing it to thin
and rupture to form drops on the surface. These drops may be readily re=-
moved by hydrodynamic forces when the system is agitated. In water vapor
condensation on a hydrophabic shock tube wall, experiments indicate that a
thin film is formed that breaks up into droplets upon reaching a critical
thickness of about 100 A.2 The process of coalescence of bubbles and drop-
lets in foams and emulsions also depends on the rupture of intervening thin
liquid film. The formation of microvilli in cancer cells can be explained
on the basis of the instability of biological membrane to small perturba-
tions, if the membrane is considered as a thin liquid film sandwiched be-
tween the extra- and intra-cellular fluidsA3

One chapterﬁ in this book has dealt with the formation and thinning of
thin liquid films. The objective of this review is to provide a unified
theoretical framework for analyzing the stability of thin liquid films, to
review briefly some of the experimental work done to measure the critical

thickness of rupture of these films, and finally, to relate the results
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obtained with some physicochemical phenomena in industrial and biological
systems. While a brief historical perspective of the work dome in this
area is given here, the major emphasis in the present review is on the

recent work on the hydrodynamic stability analysis of these films.

2. Rupture Mechanism

Initially, interest in the stability of thin liquid films arose from
studies on the coalescence of particles in unagitated colloidal disper-
sions. As previously remarked, a common phencmenon in such systems is
the formation of thin fluid films between elements of the dispersion.
Once created, these films gradually thin and may rupture upon attaining
a critical thickness (hcr) of approximately several hundred angstroms.

As reviewed by Scheludko,” early studies attributed this rupture to the
onset of a thermodynamically unstable state during the thinning process.
In these studies, the usual approach was to calculate the free energy

of the film as a function of its thickness and then to examine the thermo-
dynamic stability from the variation of the free energy with thickness
(for an example, see Frenkels for the case of a film on a solid surface.

The thermodynamic arguments, however, did not offer any insight into
the kinetic mechanism of rupture. de 'Jries5 was perhaps the first to
supplement the thermodynamic point of view of film stability with a
kinetic treatment. de Vries postulated that a film can rupture if a hole
(created by thermal or mechanical fluctuations) forms spontanecusly in
the film. He calculated that the activation energy required to form such
a hole is approximately equal to chz (¢ and h are the surface tension and
thickness of the film, respectively). The film rugtures when the quantity
ch2 is of the order kT (k denotes Boltzmann's constant and T signifies
the temperature). For a film at a temperature of 298 X and with a surface
tension of 10 dyne/am, this mechanism predicts a critical thickness of
rupture of 10 2. However, experimentally measured values of the critical
thickness for a film at 298 K and with a surface tension of approximately
10 dyne/cm are of the order of several hundred angstroms. Thus, this
mechanism yields a critcal thickness of rupture that is an order of mag-

nitude too small.
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In 1960, de VriEST modified his "hole" theory in two ways: thermal or
mechanical fluctuations can corrugate a deformable interface, and the van
der Waals' interaction forces play an important role in the rupture of
thin films. Scheludko gave, in 1962, a more detailed thermodynamic treat-
ment to the concept that deformations coupled with interaction forces can
lead to film rup:urc.a The existence of corrugation at the film interface
has been proven experimentally by light scattering sl:udies‘g Light inci-
dent upon an unperturbed, deformable interface is scattered as well as re-
flected. The scattering is caused by the unevenness of the surface: A
planar interface simply reflects incident light, while a corrugated surface
both reflects and scatters it. Scheludko suggested that these natural cor-
rugations, developing on the interfaces of a thin film, increase in ampli-
tude when the growth is accompanied by a decrease in the free energy of the
system. Rupture occurs when the enlarging deformations become equal to the
thickness of the film.

Scheludko detailed three primary factors that determine the free energy
changes of a film subject to growing surface waves: interfacial tension,
long range vanh der Waals interactions and electrical forces. A positive
interfacial tension opposes a displacement of the interface because such a
displacement increases the surface area and thus raises the free energy of
the system.

The long range van der Waals force has an interaction range of the
order of 1000 £&. 1In macroscopic systems, the effect of thickness on this
force is usually negligible because characteristic distances are larger
than 1000 g. In thin film systems, however, the role of the thickness is
more important because the thickness of the film (at the critical thicke-
ness) is of the same order of magnitude. Depending upon the properties of
fluids which form the film and bounding media, these forces can be either
attractive or reuplsive.s When the net force is attractive in nature, it
promotes the growth of surface waves.

Electrical forces are significant in the growth of surface waves when
ions are present in the liquid from which the film is formed. 1In this
case, double layers are built up at the two interfaces of the film. These
double layers oppose the growth of surface waves when their charges have
the same sign. This resistance is a consequence of the fact that surface
growth is accompanied by a reduction in the thickness of portions of the
film and this is energetically unfavorable because it causes an increased
overlap of the double layer of the two interfaces and hence an increased
repulsion.
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Vrij was the first to account for the fact that the growth of surface
disturbances occurs in the thinning film.g He utilized the corrugation
mechanism to develop a theoretical expression for the critical thickness of
rupture, suggesting that the thinning and rupture of a film can be viewed
as a two stage prccess.g'lc In the first stage the uncorrugated film
drains from an initial thickness to a thickness ho' To estimate the time
required for this drainage, Vrij considered a circular film thinning under
the action of a pressure difference between the film and its border and
containing sufficient amounts of surfactant to render the interfaces tan-
gentially immobile. For such films Reynolds' equation relates the depen-
dence of the film thickness (h) on time (t).

=2
h 4
Gt 3

In Eq. (1), w is the viscosity of the film, R is the radius and 4p is the
pressure difference causing the film to thin.

In the second stage, at a thickness ho’ corrugations develop on the in-
terfaces of the film. Only symmetric varicose disturbances were considered.
Using free energy arguments, Vrij has demonstrated that the film is unstable
for ome of the Fourier components of these disturbances. The film ruptures
when the fastest growing component of the subset reaches an amp litude h0{2.
The time necessary for this component to cause rupture was estimated by
employing a graphical procedure. Vrij identified the critical thickness
with the value of h0 that minimized the sum of the drainage and rupture
times and introduced a correction for the thinning of the film during the
growth of the surface waves. With some additional simplifying assumptions
he was also able to derive the following expression for the critical thicke-
ness of rupture h or:
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In Eq. (2), A is the Hamaker constant, e, is the surface tension, £ is a
numerical coefficient approximately equal to six (4p and R are defined af-
ter Eq. (1)). Equation (2) predicts that the critical thickness is inde-
pendent of the viscosity of the film and varies with the two-sevenths power
of the film radius.

The agreement of the elementary calculations of Scheludko and Vrij with
experimental observations not only demonstrated the feasibility of the cor-
rugation mechanism but alse provided the motivation for a more precise
study of the hydrodynamic stability of thin films.
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In hydrodynamic stability theory, a geometric perturbation is applied
to one or both interfaces of a thin film (Fig. 1). This perturbation pro-
duces deformation in the shape of the film as well as initiating fluid mo-
tion. If the interfacial perturbations grow in time, the film becomes un-
stable and may rupture. If the perturbations decay in time, the film is
stable with respect to these perturbations. 1In order to determine the con-
ditions when a film becomes unstable, all the perturbation variables of the
system are expressed in the following form:

-

8(R,t) = 8(r) &°F (3)

Here, § is any perturbation variable of the system, and it is a function
of both position, ﬁ, and time, t. 8 is the time independent component of
the perturbed quantity, and w is the complex frequency of motion (also
referred to as the angular velocity). The real component of w is referred
to as the growth coefficient (B), 1If the growth coefficient is positive,
the perturbation, %, will grow exponentially with time, and will cause the
film to be unstable. If the growth coefficient is negative, the perturba-
tion will die out eventually. If the growth coefficient is zero, the film
is considered marginally stable, and its dynamics will be determined by
the imaginary component of w. The objective of the linear stability anal-
ysis is to obtain an analytical expression or numerical values of w as a
function of various physicochemical parameters that characterize the sys-
tem, by solving the equations of continuity and motion for the system with
appropriate boundary conditions.

Two different approaches have been used to account for the long range
van der Waals and electrical double layer forces in the hydrodynamic sta-
bility analysis: a disjoining pressure procedure and a body force
procedure.

In the disjoining pressure approach, the influence of the van der
Waals and double layer forces is incorporated in the normal stress balance
at the fluid interface of the film. In these balances, the component of
the stress tensor which acts in a direction normal to the interface is re-
quired to suffer a discontinuity apart from the Laplace jump. On the
other hand, in the body force approach, the influence of these forces is
incorporated as a body force in the equations of motion. When applied
rigorously, both approaches should lead to the same results.

In the next sections, investigations carried out for both non-thinning

and thinning liquid films, using these two approaches, are discussed.
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3. Non-thinning Films
a. TInviscid Plane-Parallel Film

Felderhof has developed a detailed electrohydrodynamic study of the
surface wave dynamics of thin films. The model system he analyzed consis-
ted of an infinite plane-parallel non-thinning film composed of an inviscid
fluid and surrounded by vacuum. Dissolved ions were assumed present in
the film volume and the gravitational field was neglected. Felderhof ob-
tained analytical expressions for the motion induced by the onset of low
amplitude surface waves by using perturbation theory and normal mode anal-
ysis to solve the continuity, Euler and Maxwell equations. The
Maxwell equations were solved with the assumption that for each instanta-
neous shape of the film, the ions in the film volume have achieved thermal
equilibrium. This quasi-static assumption restricted the treatment to
surface waves with a frequency less than the inverse of the time necessary
to establish an ionic equilibrium in the film volume and on the surface.

Felderhof studied the effect of one Fourier component of a perturba-
tion of the film and found that there were two independent modes of vibra-
tion of the free film: the symmetric mode (squeezing mode) and the anti-
symmetric mode (stretching or buckling mode). The symmetric mode is a
varicose disturbance of the film; the two interfaces are displaced in si-
nusoids of equal amplitude and wavelength. For this mode, the sinusoids
are 180 degrees out of phase. The antisymmetric mode is a sinuous dis-
turbance of the film; as with the symmetric mode, the two interfaces are
displaced in sinusoids of equal amplitude and wavelength. For this mode,
however, the sinusoids are in phase (Fig. 1). For each mode, there is a
characteristic complex frequency. The response of the system to arbitrary
interfacial disturbances is composed through a linear combination (over
all wavelengths) of the two modes. Dispersion relations for both modes
were obtained. From these relations, the conditions for stability can be
determined. The dispersion relations were analyzed in the long-wavelength
limit. In this limit, his calculations indicated that the stretching mode,
in addition to the squeezing mode, can become unstable to surface waves.
Felderhof found that the stability of the stretching mode is determined by
the sign of a quantity S defined by

& A
S=(g, -y) +% -2 | )
& e grh’
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In Eq. (4), o, is the bulk surface tension of pure fluid which forms the
film, v is the spreading pressure of ioms adsorbed on the surface, & is the
electric film tension at constant volume, A is the Hamaker constant and
characterizes the London-van der Waals dispersion forces present in the
film, and ho is the unperturbed thickness of the film. Physically, o rep-
resents the free energy of formation of the double layers, and it decreases
the interfacial tension of film. On the other hand, o represents the effect
of surface adsorption of ions on the surface tension. The last term arises
from the consideration of London-van der Waals dispersion forces, and leads
to a decrease in the film tension. If S is zero, the surface waves are
stationary with time. Owing to the neglect in this treatment of viscosity
and the consequent absence of viscous dissipation, the surface waves cannot
be damped out. If S is negative, the surface waves grow with time. Since
the stretching mode does not involve variations in the film thickness, this
growth may not be accompanied by rupture. However, the growth does cause a
kind of buckling of the film. The nature of this change cannot be ascer-
tained from Felderhof's perturbation study, but it could be evaluated from

a non=-linear analysis.

b. Viscous Plane Parallel Films (Foam and Emulsion Type)

The stability of an infinite plane parallel non-thinning viscous film
was analyzed independently by Lucassen et 31_13,].& and Ruckenstein and
J'aj.r:.!'5 In the former analysis, the thin £ilm was bounded by two different
semi-infinite fluids. The semi-infinite phases and the film were assumed
to contain surface active agents whose effect on the wave motion was ac-
counted for by assuming that the surfaces were viscbelastic. Diffusional
exchange of the surfactant from the film and bulk phases to the interfaces
was, however, neglected. These authors used the disjoining pressure ap-
proach. The analysis of Ruckenstein and Jain differed from the former in
these ways: (i) these authors used the body force approach; (ii) their
treatment included a systematic analysis of the effect of surfactants, and
(iii) the film was bounded by a vacuum.

While Lucassen and coworkers derived the dispersion equation for a film
bounded by two different fluids, they examined in detail the dynamics of a
system consisting of a film bounded by two identical semi-infinite phases.
For such a system, similar to Felderhof, they found that if gravity is ne-
glected these are two independent modes of vibration of the film; the sym-

. metric mode and the antisymmetric mode. Since only the symmetric mode leads
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to film rupture due to local thinning of the film, Vrij et al.m, in a com-
panion paper, examined the conditions for growth of surface waves for the
symmetric mode in the long-wavelength limit (i.e. when the wavelength of
perturbation is much larger than the unperturbed thickness of the film).
Considering only London-van der Waals dispersion forces, Vrij et al.
and Ruckenstein and Jain showed that the growth coefficient, B (the real

part of w), for the symmetric mode is given by a simple expression:

B==-0uefy (3
where
o =g -.i. i (6)
eff o ﬂ'h: .,m_Z

and f:_ is a positive definite function of the system parameters. (The ex-
pressions for fl are different in references 14 and 15.) In this equation
T, is the interfacial tension, A is the Hamaker constant, h0 is the unper-
turbed film thickness, and A\ is the wavelength of perturbation. The sign
of B, which in turn determines the stability of the system, depends only on
the sign of Togsr An inspection of Eqs. (5) and (6) suggests that it is
possible to find the value of a wavelength that corresponds to zero growth
rate (condition for marginal stability). This wavelength is referred to as
the eritical wavelength, I\c, and is given by:

. 1/2 .2
kc h(ncrol&) ho

7N
1f the wavelength of a perturbation is greater than J\c, the film will become
unstable. For each wavelength greater than kc, the value of B is positive
and can be calculated from Eq. (5). The wavelength with the largest value
of growth coefficient is the most rapidly growing fluctuation. This wave-
length dominates the rupture kinetics of the film, and is referred to as
the dominant wavelength (Rd), Furthermore, if one assumes that the linear
stability analysis is valid up to the point when the two surfaces come into
contact, it is possible to estimate the time constant of rupture (Tm) as
the reciprocal of the growth rate corresponding to the dominant wavelength.
These studies have shown that when the bounding medium is vacuum, a
deminant wavelength does not exist in a surfactant free film.ls However,
when large amounts of surfactants are present in the system, the dominant
wavelength is given by the following expression:
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Adwfflc (8)

When the viscosity of the bounding media is' non-zero, dominant wavelength

exists even for systems without surfactants, and its value is given by
Ay ™ i A, (9)

Vrij et al. and Ruckenstein and Jain also examined the effect of the
surfactants on the growth coefficient of the symmetric mode in the long
wavelength limit. Their detailed numerical calculations demonstrated that
the maximum growth rate is essentially a step function of the surface
elasticity. For films with a surface elasticity less than a critical
value, the maximum growth rate is virtually independent of the elasticity.
At the critical value this growth rate is reduced sharply in absolute
value. For surface elasticities larger than the critical value, the maxi-
mum growth coefficient is again independent of elasticity. Since the
time of rupture is approximately the inverse of the maximum growth coef-
ficient, films with elasticities less than the critical value rupture more
quickly than those with elasticities greater than this wvalue. Vrij et al.
also found that numerical values for this critical surface elasticity are
low. They therefore concluded that only small amounts of surfactant need
be adsorbed at the interface to render it tangentially immobile. 1In the
limit of large surfactant concentration, the time constant of rupture is
given by the following expression:

2 5 ,=2
Ta = %Mo B A (10)

The analysis of thin wviscous films mentioned above did not include de-
tailed analysis of the double layer forces. Recently, Sche and Fijnaut
have extended the electrohydrodynamic analysis of Felderhof to wviscous
thin films surrounded by a vacuum.l? The dispersion relations they have
obtained are complicated because of the inclusion of these effects, and
thus detailed calculations have been undertaken only for the simplified
case of a tangentially immobile surface. For this case, the criteria for
growth of both the squeezing and stretching modes, in the long-wavelength
limit is found to be independent of the viscosity of the film and identi-
cal to the criteria established by Felderhof for inviscid flow.
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Maldarelli et al.:l'8 have recently extended the analysis of Felderhof to
the general case when the liquid film is bounded by two different viscous
phases. 1In addition to obtaining analytical results for .the squeezing and
stretching modes for a symmetric film (i.e. film bounded by the same fluid),
these authors have studied the role of asymmecry on the growth of perturba-
tions numerically, especially the asymmetry of interfacial tension.

When electrical double layers are absent, the expression for the growth

coefficient, B, for the antisymmetric mode is given by the following
expression:

B=-(ao-$)f2 (11)
[+]

Here, all the quantities have the usual meaning, and fz is a positive def-

inite function of system parameters. Therefore, instability of this type
will occur only in low tension systems, i.e. when

o 2 e

Biclogical membranes provide an example of such a 5ystem.3 When a film be-
comes unstable in this mode, it is possible to estimate the dominant wave-

length, I\d, for systems where umedia'(pfilm << 1. 1Its value is:

1/3
media’!“film) ’ (13)

Ad = 21-rh°/(€m.

It mst be pointed out here that while the value of the quantity (cr
-A;‘Bnh ) may be negative during the kinetic process, this quantity must be
pos1tive eventually for a system to be stable mechanically and thermodynam-
ically. 1In addition, reactions at the interfacem' lead to additional terms
in Eq. (11) causing the film to be unstable even at positive values of
(cr - M‘Sﬂh D=

When the film is surrounded by different fluids, it is not possible to
obtain an analytical expression for the growth coefficient. These authorslg
however have numerically examined such a system in detail, and have found
that for a given wavelength and viscosities, the primary factor that deter-
mines the ratio of amplitudes of perturbation at two interfaces is the sur-
face tension. In the antisymmetric mode, the amplitude ratio remains close
to unity, but in symmetric modes, the amplitude ratio is inversely propor-
tional to the ratio of surface tensions. One would also expect this on the
basis of physical arguments, because the larger the value of surface ten-

sions, the more difficult is it for the surface to deform.
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c. Spherical Film

Patzer and Homsey,lg in an analysis similar to the above, have exam-
ined the stability of a thin film bounded by two spherically concentric
fluid phases. Such a system can be considered as a mathematical model of
a soap bubble or a biological cell. The focus of their study was the cal-
culation of the marginally stable thickness of the spherical film as‘a
function of the physiochemical parameters of the system. The base state
was assumed to be one of zero flow. Two types of interfaces, tangentially
immobile (large surface concentration of surfactant) and completely free
(zero surface concentration of surfactant) were considered. Patzer and
Homsey found numerically that increasing the surface tension or decreasing
the Hamaker constant decreases markedly the marginally stable thickness of
the thin film. Their numerical calculations also indicated that the mar-
ginal thickness is independent of the type of interface considered (either
tangentially immobile or completely free).

d. Film on a Solid Substrate (Wetting Film)

All the .aforementioned studies on surface wave dynamics analyzed lig-
uid films that were surrounded by either a viscous fluid or a vacuum.
Ruckenstein and Jain15 and Jain and Ruckensteinzo have treated the case of
a film on a solid substrate. The model system they studied consisted of
an infinite plane-parallel non-thinning film situated on top of a solid
and bounded from above by a semi-infinite fluid. The surrounding fluid
and the film were assumed to contain surface active materials. The lower
(film-solid) interface was considered rigid and impenetrable to surfac-
tant. At the upper (film-semi-infinite fluid) interface, the authors for-
mulated a surfactant mass balance to account for the effects on the wave
motion of surface diffusion, surface shear viscosity and elasticity and
the diffusional exchange of surfactant from the film and the semi-infinite
fluid to the interface. Both London dispersion and double layer forces
were included in their analysis.

These investigators analyzed the stability of the film with respect to
infinitesimal displacements of the upper deformable interface by using
perturbation theory and normal mode analysis. Their calculations indicated
the existence of only one mode of vibration of the film. This result is a
consequence of the assumed rigidity of the lower interface. Explicit ex-

pressions for the growth coefficient for the cases of completely free
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(zero surface concentration of surfactant) and tangentially immobile

surfaces were
obtained.

In both cases, the growth coefficient, B, is given by the following
expression:

B=-n Tags © f3 s (14)
where:
- =g -’/—A\'ﬁ (15)
eff o \ﬁ'rhi/&-rz

and f3 is a positive definite function of system parameters. Here n=1 for

a tangentially immobile surface, and n=4 for a free surface. These authors

obtained the following expressions for Ac and ld for systems with and with-
out surfactants:

(16)
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Ae ZH(ZNUOfA) h°

and

»\dﬂ/"z;\c (17

When the system has no surfactants, the following expression for the time
constant of rupture was obtained:

2 5 -2
TN 48m ok h0 A (18)
On the other hand, when surfactants are present in large amounts the time
constant increases by a factor of four:
T~ 192n% 4 hO A2
m i st (13)
Their calculations further indicated that for completely free surfaces,
the growth coefficient decreases slightly with increasing viscosity of the
upper phase, while for tangentially immobile surfaces, the growth coeffi-
cent is virtually independent of this viscosity. Jain and Ruckenstein
also analyzed numerically the influence of surface elasticity and surface
shgar viscosity on the growth rate. They obtained a step profile for the
behavior of the maximum growth coefficient as a function of the surface
elasticity. Their numerical results also demonstrated that for £ilms with

reduced surface elasticities, the presence of surface shear viscosity can
markedly decrease the maximum growth rate.



4. Thinning Films
a. Foam Films

The studies discussed in Section 3 were devoted to infinite plane-
parallel or spherical non-thinning films. However, the films that occur
naturally in dispersions are radially bounded structures draining under
the influence of capillary suction and negative disjoining pressure. Thus
the previous studies, though instructive in detailing the fundamental phys-
iochemical aspects of thin film dynamics, needed to be extended to incorpo-
rate the effects of a circular geometry and drainage flow. On the basis of
Scheludko's and Vrij's ideas, a systematic analytical approach for thinning
films was developed by Ivanov et 31.21 The model system they employed
consisted of a plane-parallel circular draining foam film. Symmetric var-
icose disturbances were superimposed on the thinning and the focus of the
analysis was to determine the critical thickness at which the film ruptures
as a result of these disturbances.

To obtain analytical expressions for the motion induced by the drainage
and surface fluctuations, Ivanov et al. assumed that the velocity vector of
this motion tan be decomposed into two terms. The first is the velocity
due to the drainage of the film. This velocity was obtained by solving the
continuity and Navier-Stokes equations in the lubrication approximation for
an unperturbed circular draining film. Thus an expression for the velocity
of thinning V = -dh/dt was derived. For details see references 4 and 22.
The second term is the velocity caused by the surface waves. This velocity
was obtained by a quasi-static procedure: The film was assumed to have a

fixed thickness and the velocity vector resulting from a symmetrical vari-

cose disturbance, £, of the film was calculated as a function of this thick-

ness using the approach employed in the non-thinning films. The drainage
was then coupled to the surface growth by assuming that £ during the thin-
ning is a function of time through the thickness h. Mathematically, the
motions due to thinning and the present perturbations can be combined in
the following manner:

1 = = . = 5\"/ﬂ = = )
pegeee-(R)(R)--v(R) @

where £ is the applied perturbation, B is the growth coefficient (real
part of the frequency of motion @), and h is the average film thickness at
time t. Due to this assumption, all time-dependent quantities depend on t
only via h. Integration of Eq. (20) leads to:
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where ht is the transition thickness at which the wave becomes marginally
unstable,

The film will rupture when the amplitude of the fastest growing pertur
bation, Em’ is equal to the half thickness of the film at that time, i.e.
hcr= 2'§m;. Using this conditionm, andza set of simplifying, but physicall
consistent, assumptions, Ivanov et al. obtained the following expressior
for the initial thickness of rupture of foam films with tangentially immo-

bile interfaces: hz 4KT . Pc- L -1
er = - it x

Rznt Pc - "t
9
R P =-m =
t, ¢ cr
exp[ fsc'o e~ T .J (22)

where k is the Boltzmann's constant, T is the absolute temperature, R is
the radius of film, Pc is the capillary pressure, ao is the interfacial
tensiqn, ﬁt and ﬁcr are the disjoining pressures at the transition thick=

ness, ht’ and the critical thickness, hcr, respectively. The transition

thickness, hc’ is obtained by getting the growth coefficient, B, equal to
zero in the dispersion equation.

Using this procedure, Ivanov et al. were able to calculate theoretical

values of the critical thickness of rupture for films with tangentially

immobile surfaces. Their results were in satisfactory agreement with ex-

perimentally measured values of critical thicknesses for films with large
concentrations of surfactant when theoretical isotherm for disjoining

pressure was used 22 Fig. 21). The authors also studied films that containe

small amounts of surfactant. For these films, they utilized a surfactant

mass balance at the interface to account for the effect of surface elastic

ity on the thinning and surface motion. However, surface shear viscosity

was neglected. The theoretically calculated critical thicknesses of Tup=
ture were found to be independent of the amount of surfactant present,
contrary to the experimentally observed decrease in critical thickness

with increasing surfactant concentration. In a lacer study, Ivanov and

3 -
Dimitrov = extended the analysis of Ivanov et al. to include the effects

of surface shear viscosity. 1In this analysis, they demonstrated that the
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observed decrease in critical thickness with increasing surfactant concen-
tration can be due to surface shear wviscosity.
Interesting physical conclusions about thinning films can also be

reached, if Eq. (20) is integrated in the Eomza:

h
r

C
e r
§h ) =§(h) + | = dn (23)
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It follows from this equation that each factor which effects both § and V
to the same extent, will not alter hc:' For example, hCr for films with
tangentially immobile interfaces does not depend on n (see (22)), because
both £ and V are inversely proportional to i. On the contrary, if @ is de-
creased more than V, this will result in decreasing hcr, because the growth
of perturbations will be hindered and the surfaces will "touch" each other
at a smaller mean thickness. This can be observed in the presence of a
long-range positive (e.g. electrostatic) disjoining pressure; if it is not
large enough to prevent rupture, it will primarily slow down the drainage
from the thinnest part of the film without substantially affecting V. If,
however, the positive disjoining pressure is a short range one, it will ap-
pear and abruptly increase only when the surfaces "touch" each other and
thus will not affect hcr. This is the case of formation of black spots —
according to the above concept they should appear at the same thickness at
which the film would rupture at small surfactant concentrations. These

2
conclusions are in agreement with the experimental results of Manev et al.

b. Emulsion Films

Using the approach discussed above, Ivanov and coworkers have studied
the influence of a surfactant on the capillary waves in a symmetrical
emulsion system, and have derived expressions for the critical thickness

of rupcure?ﬁ’zy

Usingtheir results, these investigators suggest that the
critical thickness of an emulsion film can be reduced by decreasing the
value of VE more than that of V., This can be achieved in two different
ways: either by increasing the viscosity of drop (because vg + 0 as
“drupl“film >> 1) or by adding surfactants to the drops (because a large
surfactant concentration reduces vE considerably, but does not alter the

velocity of thinningy,
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Recently, Dimitrov and Ivanov28 have obtained the following expression
for the rate of thinning of emulsion films with deformable inrerfaces
using the lubrication approximation.

3
UM _ o FH A B _H P
L2tV I (24)

where H is the local film thickness, t is time, P is pressure, u is vis-
cosity, r is the radial position in film, vi and v: are the radial veloc-
ities of the upper and lower interfaces, respectively, and 7r= % %; r.
when the interface is tangentially immobile (presumably due to large sur-
factants concentration), vi'B is zero. When the interface is tangentially
mobile, vi'B is calculated by solving the Navier-Stokes' equation and the
diffusion equation for the drop phase and the film along with the appro=
priate boundary conditions (see the review article by Ivanov and Jain in
this book). Note that all hydrodynamic variables, i.e. H, vi’ﬂ and P in
Eq. (24) have two components: one which accounts for the thinning of un-
corrugated film, and the other that accounts for the flow induced in the
nen-thinning £ilm due to corrugations. By neglecting the coupling terms,
it is possible to obtain expressions for both v. and V in a straightfor=-
ward manner. Once the expressions for vg and v?are available, the pro-
cedure described above can be used to obtain the critical thickness of
rupture (unpublished results).

c. Estimation of Coupling Terms

In all the published works of Ivanov and coworkers, the effect of
drainage on the wave-motion has been assumed to be negligible. 1In an
attempt to estimate these terms, Gumerman and Homsey29 also have examined
the stability of a plane-parallel circular free draining film subject to
surface displacements. Their study, however, was restricted to films con-
taining enough surfactant to render the interfaces tangentially immobile.
These authors studied the marginal stability of film and found that hy-
drodynamic variables of the perturbed state (for example, the pressure and
the velocity vector) should, in contrast to the assumptions of Ivanov et al.,
be dependent upon the drainage. The coupling terms were also estimated by
Ivanov.zz. Based on previous studies suggesting that the length of the
wave, dominating the process of rupture, was approximately one tenth of
the film radius, he concluded that those terms can be neglected.
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We have recently calculated these coupling terms systematically using
Eq. (24) for films with tangentially immobile interfaces, and we have
derived an analytical expression for the cqupling term similar to that
found by Gumerman and Homsey. We also found numerically that these terms

are negligible for thin films with non-zero surfactant concentrations.

d. Film on a Solid Substrate with Dimple

when a small drop or bubble approaches a solid or liquid interface,
the intervening liquid film between the bubble and the interface is usually
plane-parallel. However, when the bubble is large, it readily acquires a
reverse curvature in its center so that some fluid is entrapped by a thin-
ner rin3.30 The central lens of liquid is usually referred to as 'dimple"
and the surrounding circular film as "barrier" ring (Fig. 3).

In order to study the role of dimple, we have recently analyzed a model
system as shown in Fig. 3: the liquid "barrier" ring of thickness h, and
external and internal radii R and Ry formed between a bubble and a solid
substrate.31 The fluid outside the film is considered part of the bulk
where the hydrodynamic effects can be neglected. The motion of liquid in-
side the ring is described by the linearized Navier-Stokes equations. The
role of interaction forces present in the film is incorporated by adding
the disjoining pressure, 1, in the normal stress balance. The treatment
presented here considers the surfactants soluble in the film. Further-
more, the analysis includes the Gibbs-Marangoni effects, and both the sur-
face constitutional dilational viscosity (pd) and the surface shear vis-
cosity (ps). In the limit Ri -+ 0, the results reduce to those obtained
previously for plane-parallel radially bounded film, and in the limit
Ri + 0 and R + @, the result for unbounded thin film can be obtained.

It must be pointed out here that in reality the slopes at the boundary
of the ring are continuous. 1In addition the pressure gradients outside
the ring may not be zero as assumed here. The model system considered
here makes it possible to obtain the exact solution to the problem, as
well as retains the essential features of the real system, if the pres-
sures inside and outside the ring pi and pj, are calculated by incor-
porating the geometry of the real system, i.e. the radii of bubble (Rc)
and dimple (Rd), respectively (Fig. 3).

157

Having made these assumptions the problem falls in the realm of hydro-
dynamic stability theory. The first step is to solve the base case to de-
velop an expression for film thinning. This is followed by the linear
stability analysis in which arbitrary perturbations are applied to the up-
per interface, and conditions under which these perturbations grow to
cause the film to rupture are calculated.

The growth rate of perturbation
gives the time constant of rupture. Finally, using the fact that the film
will rupture when the amplitude of perturbation is equal to the thickness

of film, the following expression for the critical thickness of rupture is

calculated using the approach outlined in Section 4-a:

2 t
R - R . , -1
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with
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and
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where AP is the driving pressure, P = 20 fR is the capillary pressure of
the bubble and Ry ™ 2R l(h - h) is the radius of curvature of the dimple,

obtained by assuming the dimple to be the cap of a sphere of radius R

The maximum elevation of the dimple, h
32

q
4 above the solid surface can be
calculated from

hy =0.285 (R + R,) /ﬁc

It must be mentioned here that as Ri -+ 0, the results for a plane-

parallel film can be obtained. In the limit R + 0 and R + =, the results

of Jain and Ruckenstein for a plane-parallel radially unbounded film can

be obtained. Since the presence of a dimple does not alter the expression

for the growth coefficient, B, the changes in eritical thickness are

mainly governed by the changes in the velocity of thinning. Velocity of
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thinning increases when the width of the ring (R - Ri) is reduced or the
radius of dimple, g is increased. Indeed, the critical thickness of
rupture, calculated numerically by solving Eq. (25), decreases as the

width of the ring decreases and/or as Rd increases.

5. Applications
a. Industrial Systems

As mentioned in Section 1, quantitative understanding of the dynamics
of thin liquid films is of importance in several industrial processes, such
as flctation,l coalescence of bubbles anddroplets in foams and emulsions,
detergency, condensation,2 and power coating. In what follows, the re-
sults discussed in previous sections are used to interpret some of the
available experimental information.

The most extensive series of experiments to measure the lifetime and
critical thickness of rupture of this liquid film have been carried out by
Scheludko and his coworkers. 1In these experiments a radially bounded thin
film is formed by either pressing a bubble (or droplet) against a solid
substrate, or by sucking out the liquid I from a biconcave meniscus formed
by the "drops" or "bubbles" of phase II (Fig. 4). Several variations of
these two basic set-ups have been used by various investigators in this
area of research;:53 an excellent exposé of the work is given in a compre-
hensive review by Scheludko.l Most of the results obtained from these
studies can be explained by the theoretical results reported in Section 4.

Another set of interesting experiments where a thin film is formed on
a solid substrate have been conducted by Goldsr;ei.n2 in a study of water
vapor condensation on a clean hydrophobic shock tube wall. Goldstein re-
ports that in these experiments a continuous film of condensate is formed,
which, after reaching a thickness of about 100 2 in about 10us after the .
compression begins to break up into many small droplets. 1In all mechanical
systems there are perturbations of various wavelengths; consequently the
rupture of the film can be considered in this case to be a consequence of
hydrodynamic instabilit}"ls It is also of interest to mention here that if
Hamaker's constant A is taken to be order of 10'12 erg and ho of the order
of 50 g, then the time constant of rupture computed from Eq. (18) with
e 70 dyne/cm and p =~ 1672 P is of the order of lOus, as was found

experimentally.z’ls
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Several investigators have measured the coalescence time in foams and
emulsions. While these '"gross" measurements do not provide accurate in-
formation about the time constant of rupture of an individual film, they
do provide an order of magnitude. Marucci,34 for example, has reported
that in the presence of surface active impurities the coalescence time in

foams is of the order of 10_1 sec. One may verify that indeed the value

107" sec can be obtained from Eq. (10) for an aqueous film about 500 2
thick.

b. Biological Systems

The biological cell provides a different example of a system in which
a thin film plays a cruical role.3 The cell membrane is a highly viscous

lamella bounded by two (approximately) spherically concentric liguid phases

(i.e. the intra- and extra-cellular fluids). In certain cell mobility pro-

cesses and in phagocytosis and microvilli formation, the membrane deforms
considerably from its approximately spherical configuration. Reasons for
the onset of these membrane deformation processes have not been fully elu-
cidated, and it is hoped that a theoretical study of the stability of thin
liquid films may provide insight into the origins of such processes,

An inspection of cells with microvilli suggests that microvilli can be

considered as the filopodial protusions of the cell membrane.35 We suggest

that intra- or extra-cellular events occurring in living cells cause small
fluctuations in the membrane configuration, and under some conditions these
fluctuacions become unstable in the antisymmetric (or buckling or stretch-
ing) mode to form villi.3 The diameter of microvilli can be estimated from

the wavelength of the fastest growing perturbation. Substituting in Eq.

-2 4
(13), ho = 100 R, Bt is 10 " P, and Beiim ™ 10" P, one obtairs the value

dominant wavelength to be of the order 0.lum, which is the experimentally

measured value of microvilli diameter.35

L3
film’ i.e. a membrane with a lower viscosity

will have a lower value of microvilli diameter, and, hence, a greater num-

Furthermore, Eq. (13) suggests
that Kd is proportional to

ber density of microvilli. Indeed, experiments have suggested that a can-

cer cell membrane is more "fluid" (i.e. less viscous) than a normal cell

. 36 ] :
mémbrane. This observation in light of the present theoretical framework
explains the greater density of microvilli in cancer cells as compared to

in normal cells.3?
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The thin film model of a cell membrane can be used to explain the fu-
sion of cells and vesicles, and engulfment of viruses and macromolecules
by cells (phagocytosis). 1In these processes, the cell membrane becomes
unstable in the symmetric (or squeezing) mode, and ruptures ultimately so
that two cells in contact can fuse. In phagocytosis, the membrane may
engulf a particle by bending (stretching mode) as the particle approaches
the membrane. Furthermore, in the symmetric mode instability of the mem-
brane thins locally at several spots (Fig. 1). This reduced thickness of
membrane may cause the membrane to be more permeable during the onset and

progession of instability.

While the present analysis is simple, it describes the available data
qualitatively. It can be improved considerably by the inclusion of non-
uniform charge density, a more precise analysis of the double-layer inter-
actions, a viscoelastic model of the membrane, a spherical configuration

38,39,40

of the cell and chemical reactions. Inclusion of some of these

factors in the stability analysis of thin films is the subject of our cur-

rent 1nvestigations.&1
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FILM ON A SOLID SURFACE

Figure 1. Modes of Instability of a Thin Liquid Film.
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Figure 2. Experimental results (curve 2) and theoretical predictions (curve
1) for the critical thickness of aniline films with tangentially
immobile surfaces.

Figure 3(a). Schematic of a "dimple" formed during the approach of a bubble
to a solid substrate,
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Figure 3(b). Schematic of the ring shaped film and the coordinate system.

Figure 4. Schematic of experimental set-ups to study the stability of thin
liquid films,




