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Thermodynamics of thin liquid films

I. Basic relations and conditions of equilibrium

B. V. Toshev and [. B. [vanov
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The thermodynamic propcttlcs of a thin
liquid film can be determined by measurmg its
~disjoining pressure and/or surface tension. The
surface tension of a polvmolecular film, whose
thickness is in the range of several hundreds
of Angstrom,” differs very little from the
surface tension of the meniscus surroundmg
the film. Hence for a long time the investiga-
tions on thin liquid films have been confined
to‘establishing the dependence of the dls]om-
ing pressure on the film thickness (1). Recently,
the interest to the so-called “black films” has
increased. These films are only several tens of
Angstrom thick. The experlmental measure-
ment of such thicknesses is a difficult task and
the very concept of “film thickness” can
hardly be defined rigomus Therefore, new
methods of investigation of thin films have
been developed (2, 3) which are based on the
experimental observation that at equilibrium
a contact angle arises between the film and the
meniscus. This angle is a measure of the surface
tension and, consequently, of the thermody-
namic state of the film. In this way a number of
investigations on the contact angles of black
foams (4) and emulsion (5) films have been
carried out.

The interpretation of the experimental data
on the basis of the’ existing theories for the
disjoining pressure (6) is only possible if a
correct and complete thermodynamic theory
of the thin liquid films is available. Derjaguin
(7), Frumkin (8) and Frenke! (9) were the first
to attack the problem. Recently Derjaguin et al.
(10, 11,12, 13) and Rusanov (14) have develop-
ed two different approaches of the thermo-
dynamic theory of the thin films. Unfortunately,
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in these theories relatively few attention has
been paid to the conditions of mechanical
equilibrium between the film and the surround-
ing phases and to their application to the
experimental data. In the literature concerning
this subject there are quite a few unaccuracies
and contradictions. For instance in most of
the published works it is not clearly indicated
whether the film tension or the film surface
tension participates in the expression of the
contact angle (see eq. [I. 43]). Recently we
developed (15, 16, 17) a new approach of the
thin films thermodynamics by giving greater
consideration to the conditions of mechanical
equilibrium. The purpose of the present
series of -papers is to describe briefly the
formerly published results together with the
recently obtained ones.

The thermodynamic approach we use is
similar to the method developed by Gibbs
(18)1). The derived expressions are in most of
the cases generalizations of the respective
equations in Gibbs’ thermodynamics of the
interfaces. In the present work the conditions
of equilibrium between the film and its
environment and the basic thermodynamic
equations are derived.

1. Disjoining pressure

For the sake of simplicity we shall consider
a particular system - a circular foam film,
surrounded by a biconcaved meniscus, formed
in a cylindrical tube (fig. 1). The results will

1) An analogous method is also employed in (14)

and (19).
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be obviously valid for other systems, contain-
ing horizontal films?2) as well for example two
bubbles or two drops separated by a liquid
film. In the case under consideration three
phases are in equilibrium — the film, the liquid
in the meniscus and the gas phase. These
phases are denoted further by superscripts f, 1
and g respectively. The film is characterized
by two geometrical parameters — the area A
~ (or radius r) and the thickness h. The chemical
potentials, the pressure and the other intensive
parameters depend on the thickness of the
film h. Since h can be defined correctly only
on the basis of thermodynamic considerations,
we postpone the discussion of this question
for the next paper of these series (21).

Because of the intermolecular interactions
the film is not homogeneous along the z — axis
(see fig. 1). The pressure in the film must
therefore be a tensor with two components —
the normal component Py and the tangential
component Pp. In a system with plane inter-
faces Py does not depend on z (14, 22). We
shall call it film pressure P/.

In the well known experiments of Derjaguin
and Kussakov (7) the film is formed between
two rigid plates. The fact that in these ex-
periments it was necessary to apply an external
force on the plates in order to keep the dis-
tance between them constant, means that the
pressure in the film was different from the
pressure P! in the bulk liquid. This pressure
difference?)

I=pr—p [L1]

has been called by Derjaguin (20) “disjoining
pressure”’.

With a free film (with liquid-gas or liquid-
liquid interfaces — see fig. 1), which is in
equilibrium with a meniscus, the situation
is more complicated since in this case the
pressure jump can be localized in principle
between either the film and the meniscus or
the film and the gas phase (12). It is not diffi-
culttoshow that the form of the thermodynamic

2) The effect of gravity on the thermodynamic
behaviour of the thin films is discussed in (19, 20).

3) The formulae in the present series of works are
numbered with Roman numerals and ciphers. The
Roman numeral is a number of the paper and the
cipher is a number of the formula in the corresponding
paper.
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Fig. 1. Thin film formed in a biconcave meniscus

relations (e.g. the tangential condition of
mechanical equilibrium — see eq. [1.43])
depends on the localization of the pressure
jump. Therefore, this question deserves special
attention.

We shall prove now that the disjoining
pressure is the equilibrium pressure difference
between the film and the meniscus. This result
follows directly from the fact mentioned above
that the normal component P y of the pressure
tensor does not depend on z and must have
the same value in the film and in the gas phase,
i€

Py=Pf=pr, “ [1.2]

P9 being the pressure in the gas phase. On the
other hand we have

Pg—PI:J)Gs II'3]

where P, is the capillary pressure. From
[I.1], [I.2] and [L.3] it follows that at equi-
librium between the film and the meniscus
exists a pressure jump

IT = Pf — Pt — P, [L.4]

It is useful to prove this statement in another
way which is less rigorous but more illustrative
(we shall not discuss in details the involved
approximations). Suppose, the capillary with
the film and the meniscus is at height /7 above
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Fig. 2. Sketch of a thin film in equilibrium with a bulk
liquid and a reference film

the level of the bulk liquid having the same
composition as the liquid in the meniscus
(Fig. 2). The height #/ is chosen in such a way
that the vapour pressure at this level is equal
to the equilibrium vapour pressure of the
meniscus?). Let us imagine a reference film
(of the same thickness and disjoining pressure
as the film in the capillary), situated immediately
under the surface of the bulk liquid. The
reference film is formed between two rigid
weightless plates. An external force G keeps
the distance between the plates constant.
According to [I.1] the disjoining pressure in
the reference film is

T =P§— P§=P§{— P}, [1.5]

where we have used the fact that P =P}
(subscript zero refers to the level A =0). The
conditions

a) PI = P{— oigH
b) P! = P§ — pigH

c) Pt =P} — ogH [1.6]

(gis gravity; p! and p are densities of the liquid
and gas phase respectively) must be satisfied

in order the whole system to be in equilibrium.
From [I.5] and [I.6] we obtain

4) It is assumed that the gas phase contains only
the solvent vapours.

a) Pr—p=pPf—pPy=1
b) Po — Pt = Py = (0! — 0)gH

¢) Pf—Po =11 — P, [1.7)

=

Eq. [I.7a] show that the pressure jump 77
is localized between the film and the meniscus.
This means that Pf = P9, so that from [1.7¢]
we obtain /7 = P,. Eq. [1.7b] is the well known
relation, used in the capillary method for
surface tension measurements.

It should be noted that if the meniscus is
assumed to be spherical, the pressure jump
takes place at the film-gas interface (/7T = P¢
— P7), and the pressure in the film is equal to
the pressure in the meniscus, i.e. P/ = P! (see
Appendix). Since this result is in contradiction
with the equilibrium conditions [1.7], we must
conclude that the meniscus cannot be spherical,
which, as a matter of fact, is also proved by
the equations for the form of the meniscus and
for its capillary pressure [see (3, 23, 24)]. That
is why, in some cases, essential errors could
be made if the meniscus is regarded as spherical.

We shall express now the disjoining pressure
through the difference in the chemical poten-
tials of the solvent in the meniscus and in a
film at the same pressure as the meniscus. The
expression :

pl (P1) = p!(P) + Iy

(v* ~»f is partial molar volume) is a good
approximation for the chemical potential of
the solvent. Since at equilibrium

pl(Ph) = p (P,
from [1.8] we get

T "ﬂpi,) :’ff,(P‘)_

Pl

(18]

[1.9]

2. Film tension, film surface tension and
basic thermodynamic equations

The work dw done for an infinitely small
deformation of a plane-parallel liquid film of
area A and volume

V= Ak [1.10]
can be written as (14)
dw = PndlVS — AdA , [I.11]
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where
"2
A= [ (P~n — Pr)dz [I1.12]
—n/2

is the film tension?3).

The equilibrium between the film, the gas
phase and the liquid in the meniscus is
determined by the conditions®)

a) P9 — Pr1

b) Po — Pt — P,

O PPl =I=P,
D =T =Tt —TF
) wl=pul =pi =pi, [1.14]

where 7" denotes temperature and u: — the
chemical potential of the / —#b component.

We shall now define the Gibbs’ excess func-
tions. Let us imagine the film and a part of the

5) In the next paper (21) it will be shown that the
limits of integration in [[.12] have to be expanded to
£ *:

L= o]
A= [(Px — Pr)dz

—a

[1.13]

The last formula has been used in (25).
6) Eqs. [I.14a]—[1.14c] were derived above (see
eqs. [1.2]—[1.4]). The other conditions are obvious.

Fig. 3. Thin film and a part of the gas phase enclosed
in a box of volume V.

gas phase enclosed in a box of volume 1V
(see fig. 3). The dotted lines denote approx-
imately the positions of the transition regions
between the film and the gas phase. This will
be our real system under investigation. Ac-
cording to the Gibbs’ treatment we must
construct an idealized system whose phases
are homogeneous up to the dividing surfaces
(shown with full lines in fig. 3) situated at

h ;
z = + —and have the same properties as the

2
phases in the real system at great distance from
the dividing surfaces. For the film this phase
will be the bulk liquid from which the film
has been builtup, i.e. the liquid in the meniscus.
Let E be the value of a given extensive
property in the real system and £¢ and £! —
its values for the respective homogeneous
phases in the idealized system. In order £
to have the same value both in the real and
the idealized systems, we must attribute to
the dividing surfaces an excess £ defined as
follows:

E=E_FEs—E'=E—al — (¢ —ev).Ab
[L.15]
where ¢¢ and ¢! are respective molar values of

E. Since P? =77 and V=174 /7 for the

free energy we can then write?)

dF = — Sdt — P1dV + 1dA + SuidN;

. [1.16]
dFt = — SUT — PUVT + SudNi  [117]
dFe = — $odT — PodV/e + SudN?  [1.18]
dF = — §dT — IdV1 + AdA + SudNy,

[1.19]

where § is the entropy and /N; — the number
of moles of the i-#h component. After
integration of [I.19] at constant intensive
variables (T, I1, A and u;) we obtain

F=_IOVi4 AA+ SulN; . [1.20]

7) Depending on the definition of film thickness
some terms of the kind pdN or Nidu; can vanish from
the following equations. Since the question of the
choice of the thickness is not considered in this paper
[see (21)], we shall omit the summation limits. The
subscript N; will mean that all N; are kept constant.
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By introducing the specific quantities

fzg;Ff='%r;f=% (1.21]
with [1.19] and [1.20] we get (see also [1.10])
df = — #dT — dh + SuidT; [1.22)
f=—Mh+ A+ Sul [1.23]

After differentiating [1.23] and comparing the
result to [1.22] we obtain the Gibbs—Duben’s
equations for the film

dA — — idT + bdIl — STedp; [1.24]

By means of the usual thermodynamic trans-
formations we can introduce, if necessary,
other thermodynamic functions as well. For
the Gibbs’ free energy, for instance, we have

C=F+0OVI—AA = JulN [1.25]

and

dC = — SdT + V1dIl — AdA + IpdN;
[1.26]

. (=

=g = Spil [1.27]

di = — §5dT + hdll —dA + Spdly [1.28]

The above obtained equations differ from
the respective Gibbs’ equations by the terms
containing the product [74. Eq. [L.24], in
particular, is a generalization of the Gibbs’
adsorption isotherm. Nevertheless, it should
be noted that the film tension 4 in not an exact
analogue of the surface tension ¢! of the bulk
phase. However we can introduce a new
quantity
20/ =4 — 11k [L.29]
which better corresponds to the surface
tension o!. Following to Rusanov (14) we shall
call ¢/ film surface tension. By using [1.29] we
can write the above equations in terms of ¢/
instead of 4. For instance

dF = — $dT — [T Adb + 206%dA + SudN;
[1.30]

F =204+ SuilNi [1.31]

f=20"+ Sul (L.32]
2dof = — #dT — I1db — 3T du, (1.33]

From eqs. [[.19] and [[.30] follow the
thermodynamic definitions of 4 and o

A= o L3
N ‘aA*) T,V1,N; [1.34]
P aF

of =5 (“a'A )T, BN H=5]

From [I.34] and [1.35] follows that the tension
A is defined at constant 1”7, and the surface
tension of — at constant 4. These expressions
show that A is the total force (per unit length)
acting upon the film perimeter and tending to
decrease the film area while ¢/ is a purely
“surface” force. This is obvious from the
following derivation of eq. [1.29] (see fig. 4).
The total force A, acting upon a unit length
of the perimeter of the film consists of the
“surface” forces 2¢7 and the ‘®wolume’ force
(Pf—PY)b. Thus, with [I.14c] we obtain [1.29]

A =2gl +(Pf — PYbh =20+ ITh [1.36]

Finally we shall derive for ¢/ an expression
similar to [[.13]. Taking into account the
symmetry of the film, by means of [I.13],
[I.14c] (with Pf=Py) and [1.29], we obtain

3] h/2
of = [(Py — Pr)dz — [ (Px — PY)dz
0 0

h|2 2]
= [ (P — Pp)dz+ [ (P~ — Pr)dz
0 h/2
[1.37)

If the position of the dividing surfaces is
chosen in such a way that they lie in the homo-
geneous gas phase, where Py=~Prp, the
second integral in [1.37] vanishes and we get a
simpler expression for of

n/2

of = [ (P! — Pr)dz [1.38]
0

I o’ pn
p'-p

Fig. 4. Balance of the forces acting upon the film
perimeter
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3. Contact angles

Since the thin film is a heterogeneous system
whose thermodynamic state depends on two
“geometrical’” parameters (thickness and area),
its mechanical equilibrium must be determined
by two conditions — one for the normal com-
ponent Py of the pressure tensor and a second
one for the tangential component Pz (normal
and tangential conditions). The normal condi-
tion, is given by eq. [I.14c]. The tangential
condition, relates ¢7, o and the contact angle8)
6. We shall derive thjs relation from the
condition was the total. free energy F; of the
system, shown in fig. 1, to be minimum. This
system consist of a film, a biconcave meniscus
and a gas phase, enclosed in a rigid cylindrical
tube of radius R and height L. Omitting the
terms of the kind S47" and JudV;, we can

write
F, = — PIrvVr — pelVv — pPiLl

+ AA + O’IAI + 0’1A1 + 0'2.142 5 [139]
where 4! is the meniscus area, .4; and .4
are respectively the areas of the interfaces
solid-liquid and solid-gas, and ¢; and o3 are
the corresponding surface tensions. On the
basis of geometrical consideration we can
write 4

A =nr?
VI = nareh
Hyq
Ve =2a [ y2dz + n(L — 2Ho) R?
nj2
Mg DY
At =4a [ yYT + y'2dz
ny2
Al = 4."‘! RHU
Ve + V7 4+ 1Vl = const
A1 + A2 = const , [1.40]

where y(2) is the equation of the generatrix
of the meniscus surface. The meaning of H,
is clear from the figure. With the aid of [1.14a]
and [1.14b] we thus obtain

8) The contact angle is defined as the angle be-
tween the extrapoled meniscus surface and the Gibbs’
dividing surface of the film (3).

H
Fi=n [ (=2Poy + 4oty )T+ 5 7)ds

R/2
+ n[2Ps R2Hy — ITr2%h + r2A

+ 4(o1 — a2) RHy|+ const [1.41]

One of the conditions for extremum of func-
tionals of the kind of eq. [I.41] has the form
[see e.g. (24)]:

9fo

— g by = 0,aty=r, [1.42]

where
F =n(—Poy?+ 4y T + ¥'?)
and

fo=n[2PsR2Hy — IIr2h + r2 A
+ 4(01 — 02) RHy] + const.

From [1.41] and [1.42] it is readily obtained

A =2clcos b + 11k [1.43]
or (see eq. [1.29])
ol = olcos [L.44]

Eq. [1.44] has been used in (26). Eqs. [1.43]
and [I.44] are the correct expressions relating
the experimentally measured contact angles
to the thermodynamic functions A and of of
the film. However, instead of them the equation

A =20l cos b [1.45]

is often employed. This equation is only valid
for the special case when the film thickness is
choused equal to zero [this is shown in the
next paper of these series (21)]. It is also ob-
tained in the hypothetical case of spherical
bubbles, drops or menisci (see Appendix).
It has to be noted that eq. [1.43] is closely
related to eqgs. [I.14a] and [I.14c]. If these,
conditions were of the form P7f= P! and
Py — Pr=]I, we would obtain [I.45] instead
of [1.43].

Eqgs. [1.43] and [1.45] differ by the term I74.
In many cases this difference is negligible but
sometimes it can be important. For instance,
if II=P;~5102 dynef/cm2, »=2.10-¢ cm,
ol =50 dyne/cm and 6 =~ 1°, [Th =10-3 which
is comparable to ¢! —gf=0g!(1 —cosb)
~7.10-3. The error introduced by neglecting
1T} in [1.43] may become substantial when the
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values of A are used in differential relations.

Eq. [I.44] allows a simple interpretation — it
expressed the balance of the “surface” forces
of and o' and requires the surface of the film
and the meniscus to be immobile. Eq. [1.44]
and the condition [T =P, (determining the
equilibrium of the liquid in the bulk of the
film and in the meniscus) have to be satisfied
simultaneously in order the system film-
meniscus to be in equilibrium.

We are indebted to Prof. A. Scheludko and to Dr. P.
Krugliakov for valuable discussions.

Appendix
Conditions of mechanical equilibrium in a system: with
spherical menisci

We consider again the system, shown in fig. 1. For
the free energy F; of this system at equilibrium we can
write i
dFy = — Pdl’s — PULY — PIIVY + AdA

+ oldAl + 01dA; + o9d Ay =0 [LA.1]

We admit that the two surfaces of the meniscus rep-
resent parts of spheres. For the sake of simplicity
the contact angle between the meniscus and the wall is
assumed zero, so that

g3 — 61 = ot [I.A.2]

By means of simple geometrical considerations,
[I.A.2] and the condition A;+ As=2aRL, eq.
[I.A.1] can be written as

— P9 — m[r2Pf 4 (R2 — r2) P! + 2 Rol]db +

+ 2n[— rbPS + r(H, + b) Pt + 2r Aldr = 0 [1.A.3]

For the total volume 17 of the system we have

V= V0 4 dUE VT = AV

+ nR2%db — 2n RHdr = 0 (L.A.4]

By applying to [I.A.3] and [[.A.4] the method of
Lagrange for the undetermined multipliers and by

2al
using the equation P¢ — Pl = %w , we obtain
Pf— i [I.A.5]
and

H
A =24 Tﬂ = 20! cosf [L.A.6]

The same results are obtained for a system containing
a film formed by pressing together two spherical
bubbles.

We see, therefore, that the assumption for the
spherical form of the meniscus surface leads to wrong

results for the conditions of mechanical equilibrium
(compare [I.A.5] and [[.A.6] to [I.14c] and [1.43]).
This means that this assumption has to be used with
caution in the cases where films are present in the
system under consideration.

However the situation is different when the
equilibrium between a film and a spherical drop,
Sformed in it, is studied?). The method, used above,
leads in this case to the correct conditions [I.14c] and

[1.43].

Summary

The conditions for equilibrium between a thin
liquid film and its environment are investigated. It
is shown that the pressure in the film and the gas
phase are equal while between the film and the
meniscus a pressure difference exists — the so-called
disjoining pressure. Eq. [[.43] is a tangential condition
for equilibrium between the film and the meniscus
surface. Using the Gibbs’ method, a general thermo-
dynamical theory of thin films is derived.

Zusammenfassung

Die Bedingungen fiir Gleichgewicht zwischen
einem diinnen fliissigen Film und seiner Umgebung
wurden untersucht. Es wurde gezeigt, daBl der Druck
in dem Film und in der Gasphase glsich sind, wihrend
zwischen dem Film und dem Meniskus ein Druck-
unterschied besteht — der sogenannte Spaltdruck.
Gleichung [I.43] ist die tangentiale Bedingung fiir
Gleichgewicht zwischen dem Film und der Meniskus-
oberfliche. Mit der Hilfe der Methode von Gibbs
wurde eine allgemeine thermodynamische Theorie des
diinnen fliissigen Filmes aufgebaut.
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