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On the basis of Navier-Stokes equations, the theory of the spontaneous rupture of thin liquid
films is generalized by taking into account the influence of the surfactant on the hydrodynamics
of the film. Our measurements of the critical thicknesses of rupture of aniline films, stabilized with
C;2H;50H, confirm the theory at low surfactant concentrations. The discussion of the discrepancy
between theory and experiment at higher surfactant concentrations shows that the surfactant influences
the properties of the thin liquid films in a specific manner.

1. INTRODUCTION

The resistance to rupture of liquid films is important for the behaviour of foams
and emulsions in polymolecular adsorption layers and in the phenomena of wetting
and flotation. This problem has been studied theoretically '-* and experi-
mentally 2+ 4-6 '

The comparison of the theoretically calculated critical thicknesses of rupture of
free liquid films with the experimental data showed an obvious discrepancy.® This
was explained by us for small film radii by taking into account * the energy of the
thicker parts (plateau border) surrounding the film. The discrepancy between theory
and experiment for the larger film radii, however, could not be explained. In this
paper we attempt to explain the discrepancy. On the basis of the Navier-Stokes
equations a new calculation of the critical thicknesses was carried out. The same
physical reasons were taken into account as in ref. (3) avoiding as much as possible
the approximations. The theory was developed also for the case when the flow of
the film surfaces was not entirely hindered by the surfactant adsorption. Finally,
the influence of the surfactant concentration of the critical thicknesses was experi-
mentally studied. It was shown that the theoretically predicted values of k.. were
reached when decreasing the surfactant concentration.

2. SOME IMPORTANT NOTATIONS

A, wave amplitude ; t, time;

co, detergent concentration ; T, absolute temperature ;

h, mean film thickness ; thickness of the vy,00,vz, velocity components ;
uncorrugated film ; V == dh/dt, thinning velocity ;

ho, transition thickness ; vz = df/dt, curving velocity;

he, critical thickness ; v, interfacial tension;

K, wave number ; C, a half of the deviation of the local film

K, wave number of the critical wave ; thickness from the mean thickness / ;

k, Boltzmann constant ; 17, dynamic viscosity ;

K, van der Waals-Hamaker constant ; v, kinematic viscosity ;

p, pressure ; 11, disjoining pressure ;

Py, capillary pressure in the meniscus ; ¢, harmonic function, solution of egn. (3.5);

" r,0,z. polar coordinates ; o, wave frequency.

R film radius.
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3. STATIONARY FILM WITH HIGH CONCENTRATION OF SURFACTANT

We examine a circular free film of radius R, formed in the centre of a biconcave
meniscus. At first, we confine ourselves to a single surface wave (wave number k).
We denote the deviation from the flat surface by {. If the two surfaces curve
symmetrically, the local thickness is A+2{ (fig. 1). Our reason for assuming that
this curvature is symmetrical is that
if at a given point one of the surfaces 2
curves, so will the other under the
influence of the increasing (or decreas-

ing) negative disjoining pressure at the N

same point. We assume throughout -

that { is much smaller than the wave- L

length or the thickness of the film, so E

e e al

that the boundary conditions on the
surface can be defined for { = 0. \_/“'
Later we examine the grounds for
this assumptions. 2R

We first assume that although
IT1<0, the mean thickness of the film FiG. 1.
remains constant (stationary film).
The movement of the liquid in the film is then only determined by the surface waves.
Since the film is thin * and the flow in it is slow, the latter can be described by the
simplified equations of Navier-Stokes ; in a cylindrical coordinate system, they are as
follows :

v, 1d0p 0%y,
T e (@)

0vy 10p 0%,

ot~ proot ez ®
I © G.1)
0z

14 1dv, Ov

Sk it il e d

r ar(””)+r 89+6z S (@

in which 7 is the time ; r, @ and z are the cylindrical coordinates ; v,, vy and v, are the
velocity components ; p is the pressure; p is the density; v = n/p is the kinematic
viscosity and 7 is the dynamic viscosity. It was shown in ref. (9) and ref. (11) that
at a sufficiently high concentration of surfactant, the adsorption layer of the film does
not move tangentially on the surface, and therefore the following boundary conditions
are valid :

v, =0 ov,]0z =0 (a)
Lt wheniz i< R NS E D g Ben = O ®) (32
v, = U Vs = (C)
o = 3L/t )

Eqn. (3.1¢) indicates that the pressure p is constant over the entire thickness of
the film and is therefore equal to its value on the surface, where it is defined as the

* The concept “ thin film ™ requires a more precise definition, as in this paper it is used in a
number of different interpretations. In this instance, it denotes #<€R.
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sum of the external pressure p, and of the local values of the capillary pressure and
the disjoining pressure. With {<h, the latter can be defined approximately as
IT(h+22z)~TII(h) +22dI1/dh. The capillary pressure caused by the local curvature
equals —yAl, in which A; = (1/r)[d(rd/dr)/dr]+(1/r?)(0%/66%). Since by definition
IT is opposed to the capillary pressure, then

p = po—Il(h)—yA{—2{dI1/dA (3.3)
For

¢ = AY(r.9) exp (1), (3.4)

in which @ and 4 denote the wave frequency and amplitude respectively, the function
Y satisfies the equation 7
Ay = — K% (3.5)
with the boundary condition
Y(R,0) = 0. (3.6)
Substituting (3.3), (3.4) and (3.5) in (3.1a) and (3.16), and with the boundary
conditions (3.2a) and (3.2b), after separating the variables, we obtain
L yK?—2dI1/dh( cosh [(w/v)*z] e ¢
=y pw cosh [(w/v)*hj2] “for
yK?—2dIIjdh{ cosh [(w/v)*z] e
po  |cosh [(w/v)h/2] ~[r o6
After substituting (3.7) in (3.1d) and integrating with respect to z, with the bound-
ary condition (3.2¢), we obtain

3.7

Uy =

,YK*—2d11/dh sinh [(w/v)*z]
Ve rit pw {(co/v)* cosh [(e/v)*h/2] _Z}C (@) s
,, YK?—2dI1/dh (tanh [(o/v)*h/2] : £
BT KT o { (@]v)*h]2 —1}{. o
It follows from (3.2d) and (3.4) that
v = 0([0t = w{: (3.9)
therefore, comparing (3.85) and (3.9), we obtain
2 e
o= gapIE ;;mdh{ta“h(‘(gf;{};/;’ 2]—1}. (3.10)

For a sufficiently thick film (wh?/v> 1), and (3.10) gives
w? = —(K*h[2p)(yK*—2dT1/dh),

i.e., the viscosity vanishes and the film behaviour is that of a film of ideal liquid.
Moreover, if 4 is sufficiently great, yK*> 2dI1/dh and w is imaginary. In this instance,
we have

w? = wf = —yk?h[2p (3.11)

which, within the factor 4 (relating to the two surfaces of the film), coincides with the

frequency of the capillary waves in an ideal liquid in a sufficiently shallow vessel
(Kh<1).'° With wh?/v<1, we obtain

o = —(K?h3/24n) yK? —2d11/dh). 3.12)

A more precise solution of (3.10) indicates that wh?/v<1 is valid for the aniline

films examined experimentally here, for all values of /# equal to or smaller than 10-5 ¢cm.
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For thin films, dII/dA>yK?, >0, and we have an increasing displacement of the
curvature. At a definite thickness A,

yK?—2(dI1/dh),, = 0. (3.13)

This equation is equivalent to formula (6) in ref. (2). Vrij ® obtains eqn (3.12) and
(3.13) in a different manner.

4. THINING FILM WITH HIGH CONCENTRATION OF SURFACTANT

In general, the thickness 4 of the thermodynamically unstable film decreases
with time. If the film viscosity and velocity of evaporation are sufficiently low, the
thinning is related to the outflow (and not to evaporation) and can also be described
by the equations of Navier-Stokes (3.1) with the boundary conditions (3.2), except
that the conditions (3.2¢) should be replaced by

v, = 1V/2+v;, when z = +h/2 (3.2¢)

in which V¥V = —dh/dt is the velocity at which the film is thinning.

Since z <A, it can be assumed that the fluctuations of the film thickness have a
negligible effect on its thinning. In this case, the pressure p can be defined as the
sum of p) the pressure of the outflow from the plane-parallel film and p*, the
perturbation caused by the wave: p* = —yA,{—2{dI1/dh. Since eqn (3.1) and
(3.2) are linear with respect to the velocity components v,, taking v, = v{? 4+ v}, the
system (3.1)-(3.2) can be broken down into two systems.

The solution of the first .system (index, f) gives a law analogous to that of
Reynolds,1%+ 13

~dh/dt = V = 2(P,—ID)h*/3R?y, @4.1)
in which P, is the capillary pressure of the biconcave meniscus which stretches the
film.

The second system (index, asterisk) takes-into account the wave motion of the
surface of the thinning film. These equations are of the same kind as (3.1)-(3.2).
As we shall be solving only this system, we shall not use the index asterisk. In this
case, i = h(t) and it is not possible to obtain a solution by separating the variables.
It is therefore necessary to simplify (3.1). We take a characteristic time t~w.
In this case, dv/dt~v/t~vw, and vd%v/dz% ~vv/h%. At small values of h (wh?/v<1),
the derivatives with respect to ¢ on the left-hand side of (3.1) can be neglected ; hence,
instead of (3.1a) and (3.15) we obtain

1(6%v,/0z%) = dp/ar; (a)
1(0%ve/0z%) = (1/r)(0p/6). (b)

Since w = w[h(t)], we again determine { with the aid of (3.4). As there are no
derivatives with respect to ¢ in (4.2), we apply the method used for the derivation®of
(3.7) and obtain

(4.2)

v, = (3m(yK?—2dI1/dh)(z*— h?[4)(L/or) : @
ve = (3n)(yK?*—2dI1/dh)(z*—h?*[4)(1/r)(0C/06) b “3)
o = —(K*H[24n)(yK? — 2dT1[dR). ©
Because of the analogy between (4.3¢) and (3.9), we take
olh(t)] = —(K?h3[24n)(yK?* —2dI1/dh), 4.4

which is formally identical to (3.12). Here also, w(k,) = 0.
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We set down (3.2d) in the form v; = dz/0t = (8(/oh)(0h/dt). With v; from
(4.3¢) and dh/dt from (4.1), after integrating with respect to 4, we obtain

{={oexp { _sz J‘M 724 dh}

L B P,—11
in which {, = {(ho) = AY(r,0).

The value of the constant A4 is dependent on the manner in which the wave is
formed. For a fluctuation wave, it can be calculated on the basis of the following
considerations. In a thick film, wh?/v>1, and in eqn (3.1a) and (3.1b), the terms
containing the viscosity can be neglected. In this case, it means that the behaviour
of the wave is that of a wave on the surface of an ideal liquid, and that its movement
does not lead to any dissipation of energy. Therefore, the theorem of Einstein !+
is applicable and gives

(4.5)

kT = (yK242%)2) [ Y2ds, (4.6)

in which k is Boltzmann’s constant and 7 is the absolute temperature ; the integration
is carried out over the entire film surface S. Eqn (4.6) determines the amplitude 4
at greater thicknesses. Since 4 is not dependent on # or on 4, this expression can also
be applied to thin films (when wh?/v<1).

When the film has a square section and an area /2, the solution of eqn (3.5) is
obtained with trigonometric functions and so for a given X, it follows from (4.6) that

A? = SKT/yK>I.

When the film thickness 4 becomes equal to 2 | {(k) | , it will rupture.* We shall
use /i, to denote this thickness. { is a function of the wave number k, and so a
given wave (let us call it the critical wave) with a wave number k,, will have a corre-
sponding maximum value of /., which is determined by the condition

(d{/dk)im = 0. 4.7

Substituting (4.5) into this equation and disregarding the negligible dependence
of { on K (see (4.6)), we obtain

T P,—II(h,,) o qp )1
ko ‘{l“ P,—H(ho)}{“’J hc,PT—H} j )

In reality, the profile of the surface is not determined by a single wave, but the
superposition of an infinite number of waves :

&(ri0.h) = ; Cx(ry0,h), 4.9)

in which {; for small / is obtained from (4.5). The summation in (4.9) is done over
all possible K. With & = h,,, the function { reaches its maximum negative value at
a point on the surface with coordinates r, and 0,. In this case, the condition for the
rupture of the film will be

hcr = 2 I C(r{)s 905 hcr) ' . 2 (4'10)
Though feasible, this method of calculation is very difficult. Accordingly,

* The cavitational mechanism of rupture is energetically unfavourable for thick films ; however,
it could take place in a highly thinned film, at the point of the maximum approach of the two surfaces.
In this case, the film will rupture when its local thickness reaches a definite, sufficiently small value
and not when it is reduced to zero. If there is only a negative van der Waals disjoining pressure,
the process of the thinning at small local thickness is so rapid that the condition of rupture need not be
defined with such precision.
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following the example of Vrij,® we shall assume in calculating  from (3.5) that the
film has a square section and we shall replace |{(ro, 0o, h,) | in (4.10) by (£2)%, in
which {2 is the average square value for the entire surface of the film. We discuss
these approximations later.

In (4.5), the function || has a sharp maximum when K = K,,, and if we replace
the sum in (4.9) by an integral, we can use the method of the steepest descent.!s
Accordingly, from (4.5) with (3.13), (4.6) and (4.8),we obtain

} it -4 2 T
PN NS () RN TS, TF)
ho

R ,—(h,,) 4y P,—TIl(ho)
in which #, is calculated from (3.13) with K,, from (4.8).

5. CRITICAL THICKNESS WITH LOW CONCENTRATION OF SURFACTANT

As has been demonstrated by Levich,’! and particularly for the thin liquid films
in ref. (9), the effect of the surfactant on the flow of the liquid is to reduce the flow
on the surface ; at a sufficiently high concentration of surfactant, the surface is motion-
less. With a flowing surface, the conditions (3.2a) and (3.25) appear as follows :

nov,[0z = xdylor (@)
: when z = +//2. (5:1)
novg/dz = +(1/r)(dy/d0) (®)

The emergence of the surfactant on the film surface takes place in two consecutive
stages : first, outward diffusion into the liquid layer situated under the surface itself,
and secondly, adsorption of the surfactant from that layer into the surface. The
theory is constructed in a different manner, depending on which of the two stages
is the rate-determining one. It was demonstrated in ref. (9) that the surfactant
(C,,H,sOH) diffused slowly, and that the first stage was therefore the rate-determining
one. On the other hand, the results of the theory for the critical thickness are the
same for the two mechanisms (slow diffusion and slow adsorption), and we therefore
confine attention to the examination of slow diffusion. In this case, the conservation
law for the surfactant, with the surface diffusion being negligible, is as follows.!! :

div (I'vy) = — D(0¢/0z)),, (5.2)
in which I’ is the surface excess of the surfactant; c¢ is the bulk concentration of the

surfactant ; D is the bulk diffusion coefficient of the surfactant; v, is the velocity on
the film surface.

We again confine ourselves to small thicknesses (wh?/v<1). In this case, eqn
(3.1a) and (3.1b) are replaced by (4.2). The distribution of the concentration is given
by Fick’s law which, in the same approximation, appesars as

Ac=0 ; (5.3)
(A is the Laplace operator) and is solved with the boundary conditions.
€= Co.when r=:R and dc*foz=0 "when z=20, (5.4)

in which ¢, is the equilibrium bulk concentration when there is no flow. With a
slow flow in the film we can again introduce p = p” +p* and v; = v +of (cf. §4),
respectively ¢ = co+c+c* T = To+I'P4+T* and y = p,+y"’+y*. Here,
Iy, and 7, are the equilibrium values of the surface excess and surface tension, ¢,
[ and y*? are the perturbations caused by the outflow of the plane-parallel film,
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and c¢*, T'*, and y* are the perturbations arising from the corrugation of the film
surface. Assuming that I'”+T'*<T,, we can obtain a simpler form than (5.2)

Ko div vy = — D(éc/C2)na. (5.2a)
All equations are linear and can again be broken down into two systems. The system

with index f leads to a generalized law of thinning ° (of the same type as that of
Reynolds) taking into account the effect of the surfactant * :

dh/dt = [2(P,—TD)h?/3R*y][1 — 3 Dy/To(dy/dc)). (5.5)

The second system is expressed by the eqn (3.1¢), (3.1d), (3.2¢), (3.2d), (4.2), (5.1),
(5.3) and (5.2a) in which the quantities p, v,, y and ¢ are asterisked, and the condition
(5.4) is replaced by

¢c*=0 when r=R and 0c*/0z=0 when z = 0. (5.4a)

We shall again abandon the index asterisk.
Eqn (3.1d) and (4.2) with the corresponding boundary conditions are solved as
before : instead of (4.3), we obtain

v, = (yK?*— 2dIT/dh){ — (h?-./4 —z22)(4n)+ B}éz/ir ; (a) (5.6)

v = (yK*—2d11/dh){ — (h?[4—z®)(n) + B}(1/r)c/c0, (b)
in which B is not dependent on z. Substituting (5.6) in (5.2a) with (3.5), we obtain
(yK?—2dI1/dh)(h? /81 + B)K?*{ = (D/To)(@c/iz)p)>- (5.7

The result of substitution of (5.6) in (5.1) can be written in the form
(yK?*—2dI1/dh)h grad { = 2(dy/dc) grad c,
which, after integration with the condition ¢ = 0 when { = 0 gives
(yK?—2dI1/dh)h{ = 2(éy/éc)c. (5.8)
From (5.3), we obtain
= Y(r, 0) cosh (Kz).
Substituting this in {5.7) and (5.8), we obtain (when Kh<1)
B = —*/8n+(Dh|2T4K) tanh (Kh/2)~ —h?/8n + Dh?/4T,.

With this value of B, from (3.1d), integrating with respect to z and putting z = +4/2,
we obtain

vy = (K213 24n)(yK? — 2dT1/dh)[1-3 Dy [T o(8y/CC)].

Substituting this expression in the equation v, = ({/éh)(ch/dr) and expressing
dAi/dt by (5.5), then integrating with respect to 4, we obtain

REK2. [ yuK“—zdn/dhdh
i, P,—TI :

which coincides with the value of z at zero velocity of flow on the surface (see eqn
(4.5)).

It follows from the above that the critical thickness of rupture within the llmllb
of the stated approximations ought not to be dependent on the concentration of
surfactant (providing we disregard the negligible effect due to the change of the
equilibrium value of the surface tension y,). This is natural, since the increasing
velocity of the flow on the surface accelerates both the thinning of the film and its

* Here and hereafter, it is accepted that the concentration is sufficiently low, and that it is therefore
possible to use Henry’s adsorption isotherm: I'~c. Hence 2y/dc = éy/éco = const.

7= exp{—
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corrugation. The first effect increases the critical thickness, and the second decreases
it. = At small amplitudes of the waves, the two effects counterbalance each other.

6. EXPERIMENTAL INVESTIGATION OF THE EFFECT OF THE CONCENTRATION
OF SURFACTANT ON THE CRITICAL THICKNESS

This investigation was carried out with aniline films, stabilized with C,,H,s;OH
since for aniline we have the most reliable data on the isotherm of the disjoining
pressure, obtained by the dynamic method for thicknesses up to the critical ones.®,
Moreover, eqn (35.5) for the velocity of thinning was verified for the same system.®

The methods, apparatus and processing of the experimental data, which are
applied, are described in ref. (5) and (16). The aniline was redistilled before every
measurement. The surface tension of the aniline (y,4. = 42.9 dyn/cm) and of the
C,,H,sOH solutions was determined by the ring method. The critical thicknesses
of rupture were measured at C,,H,sOH concentrations ¢, from 0.55x10-% to
54x10 “ M. As shown in ref. (9), Henry’s law for the adsorption of the surfactant
is valid throughout this range. The limits of ¢, were so chosen, because solutions with
¢o lower than 0.55 x 10~° M cannot be prepared with sufficient accuracy, and because
with ¢, higher than 5.4 x10-® M, the critical thicknesses of rupture are no longer
dependent on ¢,.

700

[-{ele}

500

o' 400

her

300

200

100§
1 1 | 1 l
5 [=] IS 20 30
Rx10%cm,
F1G. 2.—Dependence of the critical thickness of rupture ke, on the film radius R for aniline films
stabilized with ClezQOH.

The results of the measurements are shown in fig. 2, 3 and 4. Every point on
these curves was obtained by the statistic processing of some 100 different measure-
ments. Fig. 2 shows the dependence of /. on R at four different values of 0"
curve, 1, 54x10-°*M C,,H,sOH; curve 2, 1.6 x 10~ M ; curve 3, 0.8 x 10-6 M

b}
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s00[ -

Fic. 3.—Dependence of the critical
< soo thickness of rupture /iy of aniline films
_é’ on the concentration ¢, of the surfac-

tant (C:gstOH).
400
} | 1 |
] 2 3 4 5 6
CoX 105, M
2-80} <o
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F1G. 4.—The same dependence from ,é’ 230
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for ¢, = 0.55x 10~ M, the values of A are denoted with small triangles, and the
curve 4 was calculated theoretically on the basis of (4.11), using the isotherm IT(k)
for aniline from ref. (16).

In fig. 3, some of these results are given in coordinates A, against ¢, ; in fig. 4,
in coordinates log;oh., against log;oco. Curves 1, 2 and 3 correspond to film radii
of 6.2x10-3, 1.25x10-2 and 2x 10~2 cm respectively. The slopes of the straight
lines in fig. 4 are practically the same and close to —$, and the rise of the critical
thicknesses with the concentration of surfactant starts at approximately the same
value of the concentration cj= 5.4x 10~ M. Taking h%(R) to denote the value of
the critical thickness for ¢, >cj, we obtain (with ¢o<c}):

helRyco) = hE(R)(co/ct)™/°. (6.1)
When ¢, = 0, this dependence no longer has any significance.

7. DISCUSSION

It is difficult to compare the calculation of this paper with the calculation of
Vrij,? as his calculated results are not presented in an explicit form. In both calcula-
tions, the curves A, against R for the same II(%) and P, o1 the aniline were nearly
coincident (curve 1 in fig. 5) ; it does not follow, however, that these curves would be
similarly coincident if the initial data for II(h) and P, were different.

1ele] o

200

1 1 L 1
1o 15 20 25

Rx10% cm
FiG. 5.—Ciritical thickness of rupture A, of aniline films as a function of the film radius. Curve i

theoretical dependence with consideration of the wave superposition ; curve 2, theoretical dependence
without wave superposition ; curve 3, experimental results at a high surfactant concentration.

-

We now assess the assumptions made in deducing (4.11), viz., the replacement of

the condition (4.10) by the condition 4., = 2({?)*, and (b) the representation of the
circular film as a square one. To avoid the difficulties associated with the considera-
tion of wave superposition, we replace the sum in (4.9) by the maximum term Cams
The resultsof this calculation (when approximations (@) and (b) are retained) are shown
by curve 2 on fig. 5. If only the greatest term is taken into account, approximations
(@) and (b) can be dispensed with. ' The differences between the values of /,, calculated
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in this manner and the corresponding values from curve 2 are less than 1 %. Wave
superposition would hardly affect this estimate.

In the deduction of (4.11), the only important approximation that cannot be
assessed is that { is much smaller than 4. It will affect the result, but (see later) its
effect cannot be a determining one. If we disregard it for the present, it appears that
the error in (4.11), within the limits of the model we have used, will be only a few
per cent. At the same time, however, the experimental data for high concentration
of surfactant (co>c§) are about 30 % lower than the theoretical ones. According
to our theory, moreover, 4, should not depend on the concentration of surfactant
(see §5), whereas the experiment shows a pronounced increase of 4., with the decrease
of ¢,.

The agreement of the values of 4, calculated by Vrij * with those obtained in the
way shown here for aniline, as well as the analyses of the approximations which
have been done in this paper, showed that the discrepancy between theory and experi-
ment can hardly be due to the approximations in the theory.

An analysis of the preconditions of the theory indicates that these discrepancies
between the theoretical and experimental data may be due to some obstacle to the
thinning at the point of maximum approach of the two film surfaces. If there is such
an impediment to the inward bending process, it could well bring about a further
decrease of the mean thickness of the film, i.e., to smaller values of &.,. There seem
to be two important factors for this reduction of the velocity of the thinning: an
increased viscosity and the appearance of a new positive component of the disjoining
pressure at very small thicknesses. The analysis of the results of the investigation
of thin liquid films, in ref. (18), indicates that such a component of the disjoining
pressure is likely to appear in very thin films. It is probably caused by the adsorbed
layer of surfactant, and should decrease with the decrease of the concentration of the
surfactant. If this additional disjoining pressure is sufficiently great, it can lead to
the formation of second black films ; we have therefore denoted it by IT,,. If it is
small (as for aniline films stabilized with C,,H,;OH), it cannot counterbalance
the negative disjoining pressure and bring about the formation of a second black
film ; nevertheless, it hinders the rupture and consequently leads to a decrease of the
critical thicknesses.

At the same time, we cannot rule out the possibility that the increased viscosity in
the very thin films may also contribute to the observed decrease of A, from the
theoretical values. It was indeed established !° that the activation energy of ionic
mobility in the second black films is considerably greater than that in the bulk liquid ;
this may result from the higher viscosity in the very thin film. Nevertheless, in as.
much as the equilibrium black films can only be explained by thermodynamic factors,
the effect of Ilc, seems to be the predominant one, and the increase of the viscosity
ought to be taken as a secondary complicating phenomenon.

We finally examine the validity of the approximation {<A. With {<h/2, it is
invalid ; however, if there is only a negative van der Waals disjoining pressure
(I, = 0) in the film, the velocity v, of the critical wave at { <A/2 is so great W>V)
that this fact is not important. Naturally, with IT,,> 0, this assumption leads to an
additional discrepancy between the theory and the experimental data.

It is clear that the effect of all the additional factors leading to a divergence of the
experimental data from the theoretical results (viz., the existence of IT,,, the increase
of the viscosity and the violation of the condition { <) ought to disappear at very
low (not equal to zero) concentrations of surfactant. This inference is in accordance
with the experimental results (e.g., see fig. 2,) which, with ¢, decreasing, approach
more closely the corresponding theoretical values calculated by using the isotherm
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II(#), obtained for thick films in which IT,, does not exist. It can therefore be
assumed that the theory for the critical thicknesses is corroborated for films stabilized
with a minimum of surfactant ; however, at higher values of ¢,, the divergences from .
this theory have not yet been explained.

In conclusion, this theory contains two other simplifications which are also
present in Vrij’s theory, and which have not been examined in this paper :® (@) with
regard to the fluctuating parameters, the averaging is done in the process of the
calculations ; therefore, the final result for 4., contains no probability factor. Hence
we do not observe the scattering of results which is so typical of these processes and
which is both a source of further information and a means for the verification of the
theory. However, in so far as the fluctuating parameters show little divergence
from the mean values, it can scarcely lead to any significant inaccuracies in the mean
or most probable values of 4. that we have obtained. Actually, thie scattering of
h., experimentally obtained is slight, and symmetrically disposed around the most

‘probable vaiue.’

(b) Of greater importance is the disregard of the transitional sections of the thin
film towards the meniscus. If the film radius R is sufficiently large, this assumption
leads to correct results, but it precludes the extrapolation of the theory to R = 0,
as the theory requires 4, to tend towards zero with R—0, whereas the experimental
data * show that with R—0, there is a limiting value A(?.
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