Emulsification

Slavka Tcholakova and Nikolai Denkov

Department of Chemical Engineering, Faculty of Chemistry, Sofia University, Sofia, Bulgaria

Lecture at COST P21 School "Physics of droplets: Basic and advanced topics" Borovets, Bulgaria, 12–13 July, 2010

Contents

- 1. Types and applications of emulsions.
- 2. Processes during emulsification.
- 3. Emulsification with coalescence.
- 4. Emulsification in turbulent flow without coalescence.
- 5. Emulsification in laminar flow.
- 6. Membrane emulsification.
- 7. Microfluidics.

Types and applications of emulsion

Emulsion types

Direct emulsion

Inverse emulsion

Double emulsion

Cosmetic and pharmaceutical products

Creams, Lotions, Conditioners, Body wash, ...

Food and beverages

Milk Mayonnaise Margarine Butter Cheese

Oil recovery and processing

Both W/O and O/W emulsions are often encountered

Main characteristics of the emulsions

Oil-in-Water (O/W)

Oil volume fraction

$$\Phi = \frac{V_{OIL}}{V_{EM}}$$

Mean volumesurface radius

$$R_{32} = \sum N_i R_i^3 / \sum N_i R_i^2$$

Direct emulsion

- •Viscosity of dispersed phase, η_{D}
- •Viscosity of continuous phase, η_{c}
- •Interfacial tension, σ

Emulsification

Processes during emulsification

Requirements for drop breakup

Time scales (Walstra, 1983)

Deformation time, *t*_{DEF}

Characteristic time for applied stress

 $t_{\rm DEF} < t_{\rm C}$

Drop-drop coalescence

Types of apparatuses

Microfluidizer

Rotor-stator homogenizer

Emulsification method: narrow gap homogenizer

Main advantage - well defined hydrodynamic conditions

- Rate of energy dissipation per unit mass, $\boldsymbol{\epsilon}$
- Residence time, θ

Drop-size distribution

Optical microscopy

<u>Mean volume-surface diameter</u>, d_{32}

Main advantage – very precise characterization

Effect of emulsifier concentration

High emulsifier concentration

- Negligible coalescence
- *d*₃₂ is determined by drop breakup only

Low emulsifier concentration

Significant effect of drop coalescence on d₃₂

Emulsification with coalescence

(A) No electrostatic repulsion

Monolayer adsorption Γ_{M} needed to stabilize the drops

Comparison with experimental data (whey protein + 150 mM NaCl)

Tcholakova et al, *Langmuir*, 2003, 19, 5640; *Langmuir*, 2004, 20, 7444;

Nonionic surfactant Brij 58 + 150 mM NaCl

Tcholakova et al, *Langmuir*, 2004, 20, 7444; Tcholakova et al, *PCCP*, 2008, 10, 1608.

Solid latex particles + 500 mM NaCl

Golemanov et al, *Langmuir*, 2006, 22, 4698; Tcholakova et al, *PCCP*, 2008, 10, 1608.

Degree of coverage, $\theta = \Gamma / \Gamma_M$, preventing coalescence

System	Theory	Experimental	
WPC 150 mM NaCl	≥1	≥1	Steric repulsion
Brij 58 150 mM NaCl	≈ 1	≈ 1	
SDS 10 mM NaCl	≈ 0	< 0.05	Electrostatic repulsion
SDS 150 mM NaCl	≈ 0.23	≈ 0.3	

S. Tcholakova; N. Denkov and T. Danner, *Langmuir*, 2004, 20, 7444.

Conclusions

emulsification with coalescence

A. Suppressed electrostatic repulsion

The model with Γ_M describes very well the data ! \Rightarrow Typical for nonionic surfactants, solid particles and proteins at high electrolyte concentration.

B. Significant electrostatic repulsion
 DLVO theory describes well the data !
 ⇒ Typical for ionic surfactants and proteins.

Tcholakova et al, *Langmuir*, 2004, 20, 7444; PCCP, 2008, 10, 1608.

Emulsification in turbulent flow without coalescence

1. Main characteristics of turbulent flow

- Velocity fluctuation
- Rate of energy dissipation
- 2. Emulsification in inertial regime
- 3. Emulsification in viscous regime

Main characteristics of turbulent flow

$$u = \left\langle \left(U - \overline{U} \right)^2 \right\rangle^{1/2}$$

Time

Rate of energy dissipation

Size of the eddies in the turbulent flow

Largest eddies \approx diameter of the pipe

The smallest eddies

$$\operatorname{Re} \sim \frac{Hu\rho_{C}}{\eta_{C}} \sim 1 \qquad \qquad \lambda_{0} = \varepsilon^{-1/4} \eta_{C}^{3/4} \rho^{-3/4}$$

Drops in the turbulent flow

Inertial regime

$$d > \lambda_0$$

Pressure fluctuations

$$\rho \langle u \rangle^2$$

Viscous regime

$$d < \lambda_0$$

Viscous stresses inside smallest eddies

$$\eta_C (dU/dx)$$

Drop breakup in inertial turbulent regime

(Kolmogorov, Hinze; Davies, Calabrese)

Predicted vs. measured drop diameter

(inertial regime)

$$\boldsymbol{d} = \boldsymbol{A}_{1} \left(\boldsymbol{\sigma} + \boldsymbol{A}_{2} \boldsymbol{\eta}_{D} \boldsymbol{\varepsilon}^{1/3} \boldsymbol{d}^{1/3} \right)^{3/5} \boldsymbol{\rho}_{C}^{-3/5} \boldsymbol{\varepsilon}^{-2/5}$$

Effect of oil viscosity on emulsification in inertial regime

Oil Viscosity , η _D , Pa.s	0.1	0.6	1.5	10	60	100
1 wt % PVA σ = 21 mN/m	$19\pm4~\mu m \qquad 24\pm6~\mu m$		Millimeter sized			
10 wt % SDS σ = 7.0 mN/m	10 ± 2 μm	13 ± 3 μm	+ Non emulsified			ed oil

Time scales (Walstra, 1983)

Deformation time

 $t_{DEF} = \frac{\eta_D}{5\epsilon^{2/3} d^{2/3} \rho_C^{1/3}}$

Eddies life time

$$t_{EDDY} = \frac{d^{2/3} \rho_C^{1/3}}{\epsilon^{1/3}}$$

 $t_{\text{DEF}}/t_{\text{EDDY}} < 1$

$$t_{\rm DEF} < t_{\rm EDDY}$$

Deformation vs life time of eddies

Inertial regime of emulsification is unsuitable for oils with viscosity \geq 1 Pa.s, because of too long deformation time!

Emulsification in viscous turbulent regime

Maximal stable drop diameter

Kolmogorov, 1949; Hinze, 1955

$$d_V = A_3 \, \sigma / \left(\varepsilon \eta_C \, \rho_C \right)^{1/2}$$

Deformation vs residence time

Walstra, 1983

$$\tau_{DEF} = \frac{\eta_D}{\left(9 \,\epsilon \,\eta_C\right)^{1/2}}$$

 $η_D = 10 \text{ Pa.s}; ε = 2×10^8 \text{ J/m}^3.s; ρ_C = 10^3 \text{ kg/m}^3$ $\Rightarrow t_{\text{RES}} > t_{\text{DEF}}, \text{ when } η_C > 35 \text{ mPa.s}$

Effect of solution and oil viscosity on mean drop size in viscous regime

Successful emulsification even for oils with $\eta_D \sim 100$ Pa.s

Emulsification in Laminar flows

Elongational, $\alpha = 1$

S. Guido and co-authors, 2006

(1) Drop stretching
(2) Capillary instability
(3) Daughter drops of different sizes

Main factors controlling drop breakup in laminar flows

Drop breakup in concentrated emulsions

Agreement, if emulsion viscosity, η_{EM} , is used instead of η_{C}

Membrane emulsification

<u>Main factors</u>: Pore size, driving pressure, cross-flow, membrane surface

Main advantage: Monodisperse drops Main disadvantage: Low production capacity

<u>Applications:</u> Microreactors, Nanotechnology, Gene engineering...

Main factors: Channel size, driving pressure, co-flow

<u>Main advantages</u>: Monodisperse drops; Micromanipulation <u>Main disadvantage</u>: Very low production capacity