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Emulsion types 



Cosmetic and pharmaceutical products

Creams, Lotions, Conditioners, Body wash, …



Food and beverages

Milk 
Mayonnaise 
Margarine

Butter 
Cheese 

…



Both W/O and O/W emulsions are often encountered 

Oil recovery and processing



Oil-in-Water (O/W)

Direct emulsion

Main characteristics of the emulsions

Oil volume fraction Φ = OIL

EM

V
V

Mean volume-
surface radius
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•Viscosity of dispersed phase, ηD

•Viscosity of continuous phase, ηC

•Interfacial tension, σ

ηC

ηD

σ



Emulsification

Processes during emulsification



Requirements for drop breakup 

Applied stress
Capillary 
pressure

Viscous stress 
inside drop= +

τ ~ η ⎡δ δ ⎤⎣ ⎦D du xσ d +

Pressure balance, Davies 1985 

Deformation time, tDEF
Characteristic time for 

applied stress 

Time scales (Walstra, 1983)

tDEF < tC



Drop-drop coalescence

Stability of the 
emulsion film is 
determined by 
the surfactants 

adsorbed



Types of apparatuses

Rotor-stator homogenizerMicrofluidizer

Valve homogenizer



Emulsification method: 
narrow gap homogenizer

Narrow-gap homogenizerInitial premix Final emulsion

Main advantage - well defined hydrodynamic conditions

• Rate of energy dissipation per unit mass, ε

• Residence time, θ



Drop-size distribution

Optical microscopy

Mean volume-surface diameter, d32
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• Negligible coalescence

• d32 is determined by drop breakup only

High emulsifier concentration

• Significant effect of drop coalescence on d32

Low emulsifier concentration



(A) No electrostatic repulsion
Monolayer adsorption ΓM needed to stabilize the drops

Coalescence
Γ < ΓM

⇒ Drop size: ( )32
6
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Emulsification with coalescence
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Tcholakova et al, Langmuir, 2003, 19, 5640; Langmuir, 2004, 20, 7444;

Protein
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Nonionic surfactant Brij 58 + 150 mM NaCl

Tcholakova et al, Langmuir, 2004, 20, 7444; Tcholakova et al, PCCP, 2008, 10, 1608.
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Solid latex particles + 500 mM NaCl

Golemanov et al, Langmuir, 2006, 22, 4698; Tcholakova et al, PCCP, 2008, 10, 1608.

Particle



System Theory Experimental

WPC 
150 mM NaCl ≥ 1 ≥1

Brij 58 
150 mM NaCl ≈ 1 ≈ 1

SDS 
10 mM NaCl ≈ 0 < 0.05

SDS 
150 mM NaCl ≈ 0.23 ≈ 0.3

Degree of coverage, θ = Γ/ ΓM, preventing coalescence

Steric repulsion

Electrostatic repulsion

S. Tcholakova; N. Denkov and T. Danner, Langmuir, 2004, 20, 7444.



A. Suppressed  electrostatic repulsion
The model with ΓM describes very well the data !

⇒ Typical for nonionic surfactants, solid particles 
and proteins at high electrolyte concentration.

B. Significant electrostatic repulsion
DLVO theory describes well the data !

⇒ Typical for ionic surfactants and proteins.

Conclusions
– emulsification with coalescence

Tcholakova et al, Langmuir, 2004, 20, 7444; PCCP, 2008, 10, 1608.



Emulsification in turbulent flow 
without coalescence

Emulsification in turbulent flow 
without coalescence

1. Main characteristics of turbulent flow

• Velocity fluctuation

• Rate of energy dissipation

2. Emulsification in inertial regime

3. Emulsification in viscous regime



Main characteristics of turbulent flow

( )
1 22

u U U= −

Velocity fluctuation

Rate of energy dissipation
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Size of the eddies in the turbulent flow

Largest eddies ≈ diameter of the pipe

The smallest eddies

 Re ~ 1C

C

Hu
~

ρ
η
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Drops in the turbulent flow

Inertial regime Viscous regime

0d λ> 0d λ<

Pressure 
fluctuations

2
ρ u ( )C dU dxη

Viscous 
stresses inside 
smallest eddies



Drop breakup in inertial turbulent regime

Pressure 
fluctuations

Capillary 
pressure

Viscous stress 
inside drop= +

( )2 3
ρ εd = 2 31 3

2 η εDC d1 σC d +

2
ρ u ~ η ⎡δ δ ⎤⎣ ⎦D du xσ d +

(Kolmogorov, Hinze; Davies, Calabrese)



Predicted vs. measured drop diameter
(inertial regime)
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Effect of oil viscosity on emulsification 
in inertial regime 

Oil Viscosity, 
ηD, Pa.s

0.1 0.6 1.5 10 60 100

1 wt % PVA
σ = 21 mN/m

19 ± 4 μm 24 ± 6 μm Millimeter sized 
drops 

+ Non emulsified oil
10 wt % SDS
σ = 7.0 mN/m

10 ± 2
μm

13 ± 3
μm
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Deformation time Eddies life time 

Time scales (Walstra, 1983)

tDEF < tEDDY ⇒ tDEF/tEDDY < 1



Drop diameter, μm
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No breakup

tDEF = tEDDY

Inertial regime of emulsification is unsuitable for oils with 
viscosity ≥ 1 Pa.s,  because of too long deformation time!

ηD = 0.1 Pa.s

ηD = 1 Pa.s

tDEF < tEDDY
Breakup

ηD = 1 Pa.s d > 270 μm
ηD = 0.1 Pa.s d > 27 μm

Requirement for 
drop breakup 



Emulsification in viscous turbulent regime

Maximal stable drop diameter
Kolmogorov, 1949; Hinze, 1955

( )1 2

3V C Cd A= σ εη ρ

Deformation vs residence time
Walstra, 1983

( )1 29
D

DEF /
C

η
τ =

ε η tRES ≈ 4 ms

ηD = 10 Pa.s; ε = 2×108 J/m3.s; ρC = 103 kg/m3

⇒ tRES > tDEF, when ηC > 35 mPa.s



ηC, mPa.s
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Effect of solution and oil viscosity on 
mean drop size in viscous regime

Successful emulsification even for oils with ηD ~ 100 Pa.s



Emulsification in Laminar flows

(1) Drop stretching
(2) Capillary instability

(3) Daughter drops of different sizes

S. Guido and co-authors, 2006

Simple shear, α = 0

Elongational, α = 1
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Viscosity ratio, λ
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D Cλ = η η

“Grace plot”

Main factors controlling drop breakup in 
laminar flows

γ

Cη



Oil-in-water emulsions

λ = ηOIL/ηEM
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Drop breakup in concentrated emulsions

Oil-in-water emulsions

λ = ηOIL/ηEM
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Jansen et al., 2001; Tcholakova et al. 2008

Agreement, if emulsion viscosity, ηEM, is used instead of ηC

D EMλ = η η

Φ > 0.8



Membrane emulsification

10 μm monodisperse drops

Main advantage: Monodisperse drops
Main disadvantage: Low production capacity

Main factors: Pore size, driving pressure, cross-flow, 
membrane surface



Microfluidics
Monodisperse drops

100 μm

Applications: Microreactors, Nanotechnology, Gene 
engineering…

Main factors: Channel size, driving pressure, co-flow

Main advantages: Monodisperse drops; Micromanipulation
Main disadvantage: Very low production capacity


