Unilever

Food Emulsions and Foams

Dr. Simeon Stoyanov

Unilever Food and Health Research Institute

Outline of the talk:

- Main Building blocks of food emulsions
- Aren't these blocks too few ?
- Food emulsions clock

O, Examples of food emulsions
Ice Cream
Dressings (Mayo) Spreads (Margarine)

Unilever Food and Health Research Institute

Foods Building blocks

Oils/Fats (8kcal/g):
Proteins (4 kcal/g):
Carbohydrates (4 kcal/g): sugars, starch

Foods Building blocks

Multiple functions of macro-nutrients:

- To provide structure during processing
- To keep this structure during storage
- To give pleasant mouth feel (taste/flavour) during eating
- To deliver energy to human body in bioaccessible ways

Where there is more "technology" and what are its applications?

Foods emulsion clock

Most foods are emulsions. Both water and oil phases are usually structured.

What is Ice Cream made of? $5 / 0 / 1$

Ice

What is Ice Cream?

We think of ice cream as a 4 phase

 system:partially frozen
an oil-in-water emulsion
a foam
in a dispersed phase

ice crystals
fat droplets
air bubbles
sugar solution (matrix)

Scientific Areas Involved ...

Ice Cream

-30\% of volume

- No energy contribution

Volume

Total Energy
407kJ oule/ 100 ml $745 k J$ oule/ 100 g

Ice Cream

Ice Cream

-4.5\% of volume
-45\% energy contribution

Provides structure
Carries and delivers flavour Boosts creaminess
Stabilises the air bubbles

Volume

Energy

Total Energy
407kJ oule/ 100ml 745kJ oule/ 100g

Ice Cream

Matrix

-15\% of volume

Protein
-8\% of energy

- Stabilises fat droplets
- Stabilises air bubbles
- Contributes to flavour

Sugars

- 50% of energy
- Controls ice content

Provides sweetness -Gives thickness

Stabilisers
$\cdot<1 \%$ of energy

- Heat shock stability - Gives thickness

Volume

Total Energy
407kJ oule/ 100ml 745kJ oule/ 100g

Ingredients

Water
Milk / Cream
Fat / Oil
Air
Sugar

Flavours
Emulsifiers
Stabilisers
Colours

Ingredients: Stabilisers / Thickeners 0.0

Sea Weed (Carrageenan)

Seeds
(Guar)

Fruit

(Pectin)

Dairy raw materials and ingredie fis

Ingredients: emulsifiers

Ingredients

What is Ice Cream Made of?

What is Ice Cream Made of?

$\begin{array}{ll}\begin{array}{ll}\text { Water } \\ \text { Milk / Cream } \\ \text { Fat / Oil } \\ \text { Air }\end{array} & \text { Ice Crystals } \\ \text { Sugar } & \text { Air Bubbles } \\ \text { Flavours } \\ \text { Emulsifiers } & \text { Fat Droplets } \\ \text { Stabilisers } & \text { Matrix } \\ \text { Colours } & \end{array}$

What is Ice Cream Made of?

What is Ice Cream Made of?

Manufacturing of Ice Cream

Fat,
Milk powder,
Emulsifiers
Sugar,
Thickeners
Scraped Surface
Heat Exchanger

100 bar	15 Sec	Min. 2 hrs	Typical	$-5^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$
$60^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	$5^{\circ} \mathrm{C}$	overrun		
$\mathrm{D}[3,2]<$			$\sim 100 \%$		
$1 \mu \mathrm{~m}$					

Mixing

Raw materials tanks

Ice Cream Manufacture

Ice cream emulsion comprises droplets of ca. $1 \mu \mathrm{~m}$

Ice Cream Freezer

丞

Ice Cream Freezer

Real World ...

Foam stability (50\% air)

Emulsion (fat particle) stability

Ice crystal stability

Colloids are stabilised by surface active agents:
Milk Protein

Close up of an air bubble...
噭

Colloid Stability

Attractive forces dominate
Flocculation
Flocculation

Repulsive forces dominate Stable

Interaction between particles
Attractive forces highly dominate van der Waals, electrostatic, steric, depletion

$$
\left.\right|^{\square}
$$

Coalescence
Emulsions

Role of the emulsifier

Saturated monoglycerides are often added to ice cream to improve quality

and/or

Proposed mechanism for partial coalescence

Mechanism of surface roughening - applies to

Advantages of emulsifier fat destabilization

 in ice cream:-improved air phase stability
-greater stability against meltdown
-perceived creamier texture
-dryness on extrusion

Disadvantages:

-loss of all-natural label
-excessive destabilization can cal buttering

Perceived quality of ice cream is highly dependent on the controlle, destabilization of fat

(cut to movie)

Application of emulsions in the food industry Dressings

Real Mayonnaise

Unilever Food and Health Research Institute

(Low oil) Mayonnaise

- Mayonnaise is oil in water emulsion, made from (healthy) oils stabilized by egg yolk and flavoured with salt, vinegar and mustard

HudwOilMilighty 708x\%\%il nNuttitituonndlvadueep@er1000mil:

27530 kc call

Aim:
structure a low-fat mayonnaise with a low-caloric and natural structuring agent while maintaining a fast oral breakdown

And the solution is ...

Full fat Mayonnaise
Fast oral breakdown

Processing

- Two primary processing routes used for real mayonnaise processing

Route 1: Continuous Premix + Continuous Single Pass Milling

Route 2: Batch Premix and Multi-pass Milling

Continuous Processing - Premix

- The manufacturing process of mayonnaise typically requires formation of a pre-emulsion, or "premix"
- Premix is a coarse ($\sim 50 \mu \mathrm{~m}$) densely packed dispersion of oil droplets stabilized by egg yolk protein - this provides a barrier to recoalescence; the other aqueous ingredients surround these droplets as the continuous phase
- The initial procedure used in batching the premix is critical to the kinetics of forming the correct (oil-inwater) emulsion
- order of addition is critical: egg phase, oil and water vinegar
- egg phase must have enough water to create the continuous phase.

Premix Residence Time

The longer the premix residence time, the softer and smoother the finished mayonnaise

Solubility of Yolk and yolk components in solution as a function of pH and salt levels

- Egg yolk granule phase solubility is very sensitive to both salt level and pH
- long residence premix times result in low plummets - low pH causes granules to precipitate

Continuous Processing

Single-Pass Milling

- Final emulsification is accomplished in a milling equipment via the application of a high concentration of energy into a small volume of premix within the annular space of the mill
- The average oil droplet size is in the order of 2-8 $\mu \mathrm{m}$ depending on type of milling device
- typical average residence times of product within the mill are in the order of 10 msec
- typical average volumes of product within the mill are in the order of 10 cc

Continuous Processing

Single-Pass Milling

- Typical in-line milling equipment used for real mayonnaise

Charlotte® Colloid Mill Sanitary SD - gap $=0.007-0.010^{\prime \prime}$ (key control parameter) - 3500-3600 rpm (usually fixed) - sizes: SD2, SD5, SD20, SD40 - SD 40 has a 40 horse-power motor	
Ross in-line high shear mixer X-series - gap: 0.045-0.075" (usually fixed) - 3400-6000 rpm (key control parameter) - sizes: $3^{\prime \prime}, 6^{\prime \prime}, 9^{\prime \prime}, 12^{\prime \prime}$ and 15" (rotor diameter) - e.g 15" has 250 horse-power motor	
Fryma Koruma Modular In-line Colloid Homogenizer (Romaco)	

Margarine

Unilever Food and Health Research Institute

What is a margarine

Margarine is a water-in-oil emulsion
It contains dairy powders, salt, flavours to get a good tasteand other ingredients for functionality

Fatlevels: 80/70\% - 60\% - 40\% - (20) - (0)
Packaging: tubs and wrappers
Application: spreading, cooking, baking

- 1869 Mege Mourier Patent
- 1902 Hydrogenation
- 1930 Cooling drum
- 1950 Surface scraped heat exchanger
- 1955 Tubmargarines
- 1963/4 Becel/halvarines
- 1969 Melanges
- 1980 Protein halvarines
- 1989 Very low fat spreads
- 1993 Zero fat spreads
- 1998 Margarines with sterols

QUALITY of Margarines depends on

- Ingredients
- Blend
- Processing
- Packing
- Temperature
- storage
- distribution

Formulation and processing of margarine

```
Ingredients
-oil
-hardstock
-water + salt
-(thickener/gelling
agents)
- proteins
- emulsifier
- colour + flavours
- preservative+acid
Microstructure
    Product quality
    -spreadability
- firmness
- stability
-appearance attributes:yellow and glossy
-mouthfeel attributes:dissolvable,
Processing
- temperature
profile
- shear applied
```


Structure of Margarine

Manufacturino Process tools

* Oil refining and modification
* Blending
* Ingredient preparation
* Emulsion preparation
* Margarine processing
* Packaging

Storage/Distribution

Making Margarine Structure of Margarine

Making Margarine

Basic Flow Diagram

口四䊉

Function of A, B, C-unit

	A-unit	C-unit	B-unit
Function	Cooling	Crystallisation	Crystallisation in rest
	Crystallisation	Working	Working by sieve plates
	Emulsification		
Parameters	Cooling area	Residence time	Residence time
	Annular space	Rpm	Sieve plate(s)
	Rpm / knives	Pins (type/no)	Place
	Coolant temp.		

Depends on

- amount of crystals
temperature
SFC of the fatblend
- type of triglycerides
- working

> DIFFERENCE IN NETWORK
> - at packing or filling on the line
> - after storage or at use

Control of texture through crystal network

How to influence consumer requirements by the solid fat content

Fatty acid distribution of major oils

SFC Butter and margarines

Temperature

