Digital μ-fluidics
The flow of confined bubbles and drops
20-04-2009

Michiel Kreutzer
Department of Chemical Engineering
Delft University of Technology
Every drop/bubble is a test tube

Distribute

Optical valve
Baroud et al., Lab Chip (2007)

Split-up

Synchronize

Sort

Merge
Prakash et al., Science (2007)

Feedback
Prakash et al., Science (2007)

www.raindancetechnologies.com
Formation, mixing, merging, selection, …

Rapid variations with minimal sample use

Zheng *JACS* 125 (2003), 11170
High Throughput Nucleation Statistics
Single cell studies

Brouzes, *PNAS* 106 (2009), 14195
Lab-on-a-chip Chemistry

1. Reaction front
 - A reacts with B
 - Examples:
 - Direct fluorination
 - Phase transfer catalysis

2. Catalyst Y
 - A reacts with B in the presence of a catalyst Y
 - Examples:
 - Hydrogenation
 - Oxidation

3. Reaction occurs in A (or B) and B (or A) is a passive 'segmentation tool'

Kreutzer et al., Chem Eng Sci 60 (2005) 5895
Gunther et al., Lab Chip 6 (2006) 1487

Ismagilov, 2006
Motivation – Plug Flow & Rapid Mixing

Material Synthesis

\[\tau = 14 \text{ min} \quad \textit{Khan, 2005} \]

Res. Time Distribution = Particle Size Distribution

High-Throughput Analytical Chemistry

Karger 2005

Kreutzer & Guenther, 2005
Residence Time distribution = Particle Size Distribution

Colloidal Silica. Khan *Langmuir* 2005

Segregation - Dispersion

Catalysis: film thickness key parameter

Excellent transport to wall

\[\frac{d_{\text{film}}}{d_{\text{channel}}} = O(Ca^{2/3}) \approx 10^{-2} \]

100-fold better mass-xfer

Full CFD simulation

Michiel T. Kreutzera,\,*, Freek Kapteijna, Jacob A. Moulijna, Johan J. Heiszwolfb

Chemical Engineering Science 60 (2005) 5895–5916
Segmented flow Synthesis

Kinetic tool, ideal for hazardous chemistry

\[\text{Azide hydrogenation to form amines} \]

Temperature low enough to maintain stereospecificity
Monitoring conversion is easy

(a)

(b) flow

inlet

Conversion [%]

0 10 20 30 40 50 60 70 80 90 100

run 1 run 2

GC Camera GC Camera
Fast kinetics

Complete kinetics can be measured in a day

\[
0^{th} \text{ order in CE} \\
r \sim kC_{H_2}
\]

\[
1^{st} \text{ order in CE} \\
r \sim kKC_{H_2}C_{CE}
\]

\[
r = \frac{kKC_{H_2}C_{CE}}{1+KC_{CE}}
\]

\[E_a = -34 \text{ kJ/mol} \quad \left(R^2 = 0.99 \right) \]

\[E_a = -32 \text{ kJ/mol (Boudart et al. 1978)} \]
Our basic questions for today

• Simplest case: bubble/droplet in a tube
 – What is the flow resistance? Film thickness?
 – Look at the basic problem of forced wetting (plate, capillary, all the same)
 – Do the full matched-asymptotics that leads to the “BLL 2/3 law”

• More complex cases: inertia, marangoni effects?
 – Basic features of the solutions

• Channel Shape?
The Bretherton-Landau-Levich problem

Layer on flat plate coating on a wire coating in a tube

Characteristics:

- Film deposited, thickness depends on speed (so called “2/3-law”, thickness scales with $Ca^{2/3}$)
- Both on wetting and non-wetting surfaces (the transition to forced wetting is NOT today’s topic)
- Matching of film to “outer” solution
Basic setup of the problem - Matching

\[\frac{\partial p}{\partial x} = \mu \frac{\partial^2 u}{\partial y^2} \]

Moving reference frame: bubble stands still: \[u(0) = -U, \quad \frac{\partial u}{\partial y}(h) = 0 \]

Navier Stokes:

Continuity

with \[q = \int_0^h u \, dy \]
Lubrication thin-film equation

Navier Stokes: \[u = -U + \frac{\partial p}{\partial x} \left[\frac{y^2}{2\mu} - \frac{yh}{\mu} \right] \]

Laplace pressure \[\frac{\partial p}{\partial x} \approx \frac{\partial}{\partial x} \left[\gamma \frac{\partial^2 h}{\partial x^2} \right] \]

Continuity \[\frac{\partial h}{\partial t} + U \frac{\partial h}{\partial x} - \frac{\gamma}{3\mu} \frac{\partial}{\partial x} \left(h^3 \frac{\partial^3 h}{\partial x^3} \right) = 0 \]

q = \int_0^h u \, dy = Uh - \frac{\gamma}{3\mu} h^3 \frac{\partial^3 h}{\partial x^3}
Scaling of the transition region: first relation

\[
\frac{\partial h}{\partial t} + U \frac{\partial h}{\partial x} - \frac{\gamma}{3\mu} \frac{\partial}{\partial x} \left(h^3 \frac{\partial^3 h}{\partial x^3} \right) = 0
\]

Bubble stands still, so must be zero, we balance the 2nd and 3rd terms:

\[
\frac{\partial h}{\partial x} \sim \frac{\gamma}{3\mu U} \frac{\partial}{\partial x} \left(h^3 \frac{\partial^3 h}{\partial x^3} \right)
\]

\[
x \sim \lambda \quad h \sim \delta \quad \frac{\delta}{\lambda} \sim \frac{\lambda}{3\mu U} \frac{1}{\lambda^3} \left(\frac{\delta^3}{\lambda^3} \right)
\]

or

\[
Ca^{1/3} \sim \frac{\delta}{\lambda}
\]
Matching to outer solution: second scaling relation

First scaling rule

\[Ca^{1/3} \sim \frac{\delta}{\lambda} \]

Scaling of the problem

\[\delta \sim r Ca^{2/3} \]
\[\lambda \sim r Ca^{1/3} \]

Second scaling rule

\[\frac{\delta}{\lambda^2} \sim \frac{1}{r} \]

Matching curvature

flat film region | transition region | spherical cap region

\[\kappa \sim \frac{\partial^2 h}{\partial x^2} \sim \frac{\delta}{\lambda^2} \]

\[\kappa = \frac{1}{r} \]
The Bretherton-Landau-Levich problem

- **Clean interface case:**
 - 2/3 law experimentally predicted by Morey (1940)
 - Theoretical derivation of 2/3 law for flat plate by Landau-Levich (1942)
 - Theoretical derivation of 2/3 law for capillaries by Bretherton (1961)

- **Surfactant case**
 - Theoretical derivation by Bretherton (1961)
 - Coating of flat surfaces by Groenveld (1970)

- **Additional forces (on top of viscous-capillary)**
 - Gravity & Partial wetting fluids by Snoeijer (2008)
Master equation

Again, using the film evolution equation

$$\frac{\partial h}{\partial t} + \frac{\partial}{\partial x} \left(Uh - \frac{\gamma}{3\mu} h^3 \frac{\partial^3 h}{\partial x^3} \right) = 0$$

Steady state, so drop the transient term

$$Uh - \frac{\gamma}{3\mu} h^3 \frac{\partial^3 h}{\partial x^3} = c \quad \Rightarrow \quad \frac{\partial^3 h}{\partial x^3} = \frac{3\mu U}{\gamma} \frac{h - c}{h^3}$$

In the flat region, \(\frac{\partial^3 h}{\partial x^3} = 0 \)

which gives \(c \):

$$0 = \frac{\delta - c}{\delta^3}, \quad c = \delta$$

\eta = \frac{h}{\delta}

\xi = (3Ca)^{1/3} \frac{x}{\delta}

\frac{\partial^3 \eta}{\partial \xi^3} = \frac{\eta - 1}{\eta^3}
Forced Wetting Film Equation

\[\frac{\partial^3 \eta}{\partial \xi^3} = \frac{\eta - 1}{\eta^3} \]

“exponential range”

\[\eta \approx 1 \]

\[\frac{\partial^3 \eta}{\partial \xi^3} \approx \eta - 1 \]

which has an analytical solution

\[\eta = 1 + \alpha e^\xi + \beta e^{-\xi} \cos \left(\frac{3^{1/2}}{2} \xi \right) + \gamma e^{-\xi} \sin \left(\frac{3^{1/2}}{2} \xi \right) \]

“parabolic range”

\[\eta \gg 1 \]

\[\frac{\partial^3 \eta}{\partial \xi^3} \approx 0 \]

which has an analytical solution

\[\eta = \frac{P}{2} \xi^2 + Q \xi + R \]
Four different regions with their scaling

\[
\frac{\partial^3 \eta}{\partial \xi^3} = \frac{\eta - 1}{\eta^3}
\]

\[
\frac{\partial^n \eta}{\partial \xi^n} = 0
\]

\[
\frac{\partial^3 \eta}{\partial \xi^3} \approx \eta - 1
\]

\[
\frac{\partial \eta}{\partial \xi} \ll (3Ca)^{-1/3}, \quad \frac{\partial^3 \eta}{\partial \xi^3} \approx 0
\]

\[
\frac{\partial^2 \eta}{\partial \xi^2} = \frac{\delta}{r(3Ca)^{2/3}}
\]
Set up match of "exp" and "parabolic"

Exponential: \(\frac{\partial^3 \eta}{\partial \xi^3} = \eta - 1 \)
\[\eta(\xi) = 1 + \alpha e^\xi \]

Parabolic: \(\frac{\partial^3 \eta}{\partial \xi^3} \approx 0 \)
\[\eta(\xi) = \frac{P}{2} \xi^2 + Q \xi + R \]
Use exponential for initial conditions:

\[\eta(\xi) = 1 + ae^{-\xi} \]
\[\eta(0) = 1 + a \]
\[\eta'(0) = a \]
\[\eta''(0) = a \]

And integrate full equation with that

\[\frac{\partial^3 \eta}{\partial \xi^3} = \frac{\eta - 1}{\eta^3} \]

Move numerical solution to left and right, such that \(Q = 0 \)

Fitting:

\[P = 0.643, \quad R = 2.79 \]

Note: MTK gets \(a = 0.001, \quad P = 0.643, \quad Q=0, \quad R = 2.90 \) with Mathematica’s NDSolve
2/3 law for film thickness

\[\frac{\partial^3 \eta}{\partial \xi^3} = \frac{\eta - 1}{\eta^3} \]

\[\frac{\partial^2 h}{\partial x^2} = \frac{1}{r} \]

is the same as

\[\frac{\partial^2 \eta}{\partial \xi^2} = \frac{\delta}{r(3Ca)^{2/3}} \]

Parabola matches to the sphere:

\[0.643 = \frac{\delta}{r(3Ca)^{2/3}} \]

\[\frac{\delta}{r} = 0.643(3Ca)^{2/3} \]
Perturbation of Laplace pressure

The parabola \(h = \left(\frac{x^2}{2} + 1.79(3Ca)^{2/3} \right) r \) matches to a sphere of curvature \(\left[\frac{2}{r}(1 + 1.79(3Ca)^{2/3}) \right] \)

\[
\eta = 0.643\xi^2 + 2.79 \\
\frac{\eta}{r/\delta} \sim 1 \\
\frac{\partial^2 \eta}{\partial \xi^2} = \frac{\delta}{r(3Ca)^{2/3}} \\
\frac{\partial^n \eta}{\partial \xi^n} = 0
\]
Rear of the bubble

\[\eta(\xi) = \frac{0.643}{2} \xi^2 - 0.8 \]

Numerical solution

\[\eta = 1 + \alpha e^{-\xi} \cos \left[\frac{3^{1/2}}{2} \xi \right] + \beta e^{-\xi} \sin \left[\frac{3^{1/2}}{2} \xi \right] \]
Pressure drop over the bubble:

\[\Delta p = [1 + 1.79(3Ca)^{2/3}] \frac{2y}{r} \]

\[\Delta p = [1 - 0.46(3Ca)^{2/3}] \frac{2y}{r} \]

\[\Delta p = 4.52(3Ca)^{2/3} \frac{y}{r} \]
Experiments

Bretherton, *J Fluid Mech* 10 (1961), 166
Why the maximum?

First matching rule
\[Ca^{1/3} \sim \frac{\delta}{\lambda} \]

Second matching rule
\[\frac{\delta}{\lambda^2} \sim \frac{1}{r - \delta} \] Thick film decreases radius of curvature!

Scaling of the problem
\[\delta \sim r \frac{Ca^{2/3}}{1 + Ca^{2/3}} \]
\[\lambda \sim r \frac{Ca^{2/3}}{[1 + Ca^{2/3}]^{1/2}} \]

The not-so-simple cases

Marangoni, Inertia, non-round, thick films, …
Marangoni Effects

Moving reference frame: bubble stands still:

\[u(0) = -U, \quad \partial u / \partial y(h) = 0 \]

\[
\frac{\partial h}{\partial t} + U \frac{\partial h}{\partial x} - \frac{\gamma}{3 \mu} \frac{\partial}{\partial x} \left(h^3 \frac{\partial^3 h}{\partial x^3} \right) = 0
\]

\[\delta = 0.643 \, r \left(3 \text{Ca} \right)^{2/3} \]

\[\delta = 0.643 \, r \left(12 \text{Ca} \right)^{2/3} \]
Inertia changes bubble shape

$Ca = 0.04$

$Re = 1, 10, 100, 200$

Kreutzer et al, *AIChE* 51 (2005) 2428
Inertia increases film thickness

\[\delta \sim r \frac{Ca^{2/3}}{1 + Ca^{2/3} - We} \]

\[We = \frac{\rho U^2 (r - \delta)}{\gamma} \]

Square Channels

Modeling Shapes and Dynamics of Confined Bubbles

Vladimir S. Ajaev1 and G.M. Homsy2

Rise of Liquids and Bubbles in Angular Capillary Tubes

José Bico and David Quéré1

Hydrostatics

Without flow, there cannot be a gradient of (Laplace) pressure

\[\nabla p = 0 \]

For a channel of width \(W \) and height \(H \), we have at the nose

\[\Delta p = \gamma \left[\frac{2}{H} + \frac{2}{W} \right]^{-1} \]

In the gutter, no curvature in the axial direction, so

\[\Delta p = \gamma \left[\frac{1}{\infty} + \frac{1}{\alpha} \right]^{-1} \]

\[\alpha = \left[\frac{2}{W} + \frac{2}{H} \right]^{-1} \]

Bretherton’s problem - MT Kreutzer
Film Deposition

![Diagram of fluid film deposition with annotations](Image)

- **Deposition region (1)**
 - $Ca^{1/3}$
 - $x \sim Ca^{-1}$ First stage of film rearrangement (3)

- **Tangential convection region (2)**
 - $O(1)$

- **Quasi-steady constriction (4)**
 - $Ca^{2/3}$
 - $x \gg Ca^{-1}$ Second stage (5)

- **Termination region (6)**
 - $h_1 Ca^{-1/3}$

The non-uniformity starts at the nose

\[\delta = \frac{0.643}{\alpha} (3Ca \cos\phi)^{2/3} \]

What have we learned

- Scaling in flow of long bubbles / droplets in cylindrical tubes (basically the same as Landau Levich)

- Marangoni effects increase film thickness and pressure drop by a factor $4^{2/3}$

- There is a maximum film thickness at high Ca (this does not happen with a flat plate LL scaling)

- Inertia increases film thickness, numerical solution needed

- Square channels have highly non-uniform films
Further Reading

• Recent reviews

 Kreutzer et al., *Chem Eng Sci* 60 (2005) 5895

• Microfluidics: a couple of key papers
