Interfacial Tension, Capillarity and Surface Forces

Peter A. Kralchevsky

Department of Chemical Engineering, Faculty of Chemistry

Sofia University, Sofia, Bulgaria

Lecture at COST P21 School

"Physics of droplets: Basic and advanced topics"

Borovets, Bulgaria, 12–13 July, 2010

Molecular Origin of Surface Tension

The molecules at the surface have one neighbor less. Because of the formation of surface, the energy of the system <u>increases</u> with:

$$W = |u_{AA}| \Gamma L_x L_y$$

 Γ = number of molecules per unit area

The force per unit length is:

$$\sigma = \frac{1}{L_y} \frac{\mathrm{d}W}{\mathrm{d}L_x} = |u_{AA}| \Gamma$$

surface tension =
surface excess energy per unit area

Adsorption of Surfactants

Adsorption Isotherm and Gibbs Adsorption Equation

$$d\sigma = -\sum_i \Gamma_i \,\mathrm{d}(\ln c_i)$$

 Γ_i – adsorption of component "*i*" c_i – its bulk concentration

The Gibbs eq. describes the lowering of surface tension due to surfactant adsorption.

Chemical potential:

 $\mu_i = \mu_i^0 + kT \ln c_i$

In Region (1) dense adsorption layer is formed, Γ = const. and $\sigma(lnc)$ is linear;

In Region (2) micelles are formed in the bulk, μ_i = const. and σ = const. CMC = critical micelle concentration

Models with Localized Adsorption

Frumkin Model:

Adsorption isotherm $c = c(\Gamma) \Leftrightarrow \Gamma = \Gamma(c)$

 $Kc = \frac{\Gamma}{\Gamma_{\infty} - \Gamma} \exp(-\frac{2\beta\Gamma}{kT})$

K – adsorption constant; Γ_{∞} – maximal adsorption;

 β – accounts for the interaction between adsorbed molecules;

 σ_0 – surface tension of pure solvent

Surface equation of state:
$$\sigma = \sigma(\Gamma)$$

 $\sigma = \sigma_0 + \Gamma_\infty kT \ln(1 - \frac{\Gamma}{\Gamma_\infty}) + \beta \Gamma^2$

The surface is modeled as a lattice with full and empty adsorption sites.

Model appropriate for adsorption on a solid surface

Langmuir Model: Special case of the Frumkin model with $\beta = 0$ no interactions between the adsorbed molecules.

Models with Non-Localized Adsorption

Van der Waals Model:

surfactant molecules in lateral thermal motion

Adsorption isotherm $c = c(\Gamma) \iff \Gamma = \Gamma(c)$

$$Kc = \frac{\Gamma}{\Gamma_{\infty} - \Gamma} \exp(\frac{\Gamma}{\Gamma_{\infty} - \Gamma} - \frac{2\beta\Gamma}{kT})$$

K – adsorption constant; Γ_{∞} – maximal adsorption; β – accounts for the interaction between adsorbed molecules; σ_0 – surface tension of pure solvent

Surface equation of state: $\sigma = \sigma(\Gamma)$

$$\sigma = \sigma_0 - \frac{\Gamma_{\infty} \Gamma kT}{\Gamma_{\infty} - \Gamma} + \beta \, \Gamma^2$$

The surface is modeled as a lattice with full and empty adsorption sites.

Model appropriate for adsorption on a liquid surface

<u>Volmer Model</u>: Special case of the van der Waals model with $\beta = 0$ no interactions between the adsorbed molecules.

Comparison of the van der Waals and Frumkin Models

Both models fit well data for $\sigma(c)$ for a liquid surface (indistinguishable curves).

However, "van der Waals" gives <u>the real</u> <u>excluded area</u> per SDS molecule, whereas "Frumkin" yields a greater area:

$$\frac{1}{\Gamma_{\infty}} = 0.30 \,\text{nm}^2 \qquad \qquad \frac{1}{\Gamma_{\infty}} = 0.40 \,\text{nm}^2$$
van der Waals) (Frumkin)

The van der Waals model gives <u>realistic</u> <u>values of surface elasticity</u>, whereas the Frumkin models yields greater values.

Basic References

- 1. E.D. Shchukin, E.D. Shchukin, A.V. Pertsov, E.A. Amelina, and A.S. Zelenev, *Colloid and Surface Chemistry*, Elsevier, Amsterdam, 2001.
- 2. P.A. Kralchevsky, K. Nagayama, *Particles at Fluid Interfaces and Membranes*, Elsevier, Amsterdam, 2001; Chapter 1 http://www.lcpe.uni-sofia.bg/files/publications/2001/2001-22-Book1.pdf
- P.A. Kralchevsky, K.D. Danov, N.D. Denkov. Chemical physics of colloid systems and Interfaces, Chapter 7 in *Handbook of Surface and Colloid Chemistry"*, (Third Edition; K. S. Birdi, Ed.). CRC Press, Boca Raton, 2008; pp. 197-377. http://www.lcpe.uni-sofia.bg/files/publications/2008/2008-09-PK-KD-ND-Handbook-Birdi-3rd-Edition.pdf

Additional References

- 4. K.D. Danov, P.A. Kralchevsky, et al. Interpretation of Surface-Tension Isotherms of n-Alkanoic (Fatty) Acids by Means of the van der Waals Model, *J. Colloid Interface Sci.* 300(2) (2006) 809-813. http://www.lcpe.uni-sofia.bg/files/publications/2006/2006-15-KD-PK-KA-AL-Fatty-Acids.pdf
- 5. V.L. Kolev, K.D. Danov, P.A. Kralchevsky, et al. *Comparison of the van der Waals and Frumkin Adsorption Isotherms for SDS at Various Salt Concentrations, Langmuir* 18 (2002) 9106-9109. http://www.lcpe.uni-sofia.bg/files/publications/2002/2002-07-PK.pdf
- 6. P.A. Kralchevsky, K.D. Danov, V.L. Kolev, et al. Effect of Nonionic Admixtures on the Adsorption of Ionic Surfactants at Fluid Interfaces. Part 1. SDS and Dodecanol, *Langmuir* 19 (2003) 5004-5018. http://www.lcpe.uni-sofia.bg/files/publications/2003/2003-03-PK.pdf
- 7. P.A. Kralchevsky, K.D. Danov, et al. Thermodynamics of Ionic Surfactant Adsorption with Account for the Counterion Binding: Effect of Salts of Various Valency, *Langmuir* 15 (1999) 2351-2365. http://www.lcpe.uni-sofia.bg/files/publications/1999/1999-02-PK.pdf

Capillarity – Laplace Equation

Force-balance derivation:

$$\frac{2\sigma}{R_{\rm c}} = p_{\rm d} - p_{\rm m} \equiv P_{\rm c}$$

(Laplace equation) $P_{\rm c}$ – capillary pressure

$$(\pi R_{\rm c}^2) p_{\rm d} = (\pi R_{\rm c}^2) p_{\rm m} + (2\pi R_{\rm c}) \sigma$$

For general curved interfaces - two curvature radii:

 p_{d}

 φ – running meniscus slope angle

Drop Shape Analysis (DSA) for Surface Tension Measurements

$$\frac{\sigma}{r} \frac{d}{dr} \left[\frac{rz'}{\left(1 + {z'}^2\right)^{1/2}} \right] = P_{\rm c} = \frac{2\sigma}{R_{\rm b}} - \Delta \rho gz$$
$$z = z(r); \qquad z' = \frac{\mathrm{d}z}{\mathrm{d}r}$$

0

pendant drop

Picture by apparatus Kruss DSA100

Laplace equation; $R_{\rm b}$ – curvature radius at the bottom of the drop $P_{\rm c}$ – capillary pressure

1) The drop profile is automatically digitized;

- 2) Then, the data for the profile are fitted numerically by the Laplace equation using σ and $R_{\rm b}$ as adjustable parameters.
- 3) The surface tension σ is obtained from the best fit; effect of surfactants on σ .
- 4) The method works with both drops and bubbles; both pendant and sessile profiles.
- 5) The method is accurate when the gravitational deformation (the deviation from spherical shape) is not too small.

Surface Force & Disjoining Pressure

Surface force = Force of interaction between two bodies (two phases) when the distance *h* between their surfaces is relatively small.

Typically, *h* < 100 nm.

Disjoining pressure, $\Pi(h) =$ **Surface force per unit area** of a plane-parallel film [1-3].

Capillary (Laplace) pressure: $P_c = P_{in} - P_l = 2\sigma/R$ (σ – surface tension)

Force balance per unit area of the film surface: $P_{l} + \Pi = P_{in}$

Hence: $\Pi = P_{in} - P_l = P_c$ (disjoining pressure = capillary pressure) [4].

DLVO Theory: Equilibrium states of a free liquid film

Scheludko-Exerowa capillary cell for thin-liquid-film (TLF) studies [7,8]

Measurements of:

(1) Film thickness vs. time;

(2) Contact angles of TLF;

(3) Lifetime of the films.

<u>Illustration</u>: Stepwise thickness transitions in films from 0.1 M solutions of the nonionic Brij 35:

Derjaguin's Approximation (1934):

The energy of interaction, *U*, between two bodies across a film of uneven thickness, h(x,y), is [9]:

$$U = \iint f(h(x, y)) \ dxdy$$

where *f*(*h*) is the interaction free energy per unit area of a plane-parallel film:

$$f(h) = \int_{h}^{\infty} \Pi(\tilde{h}) \,\mathrm{d}\tilde{h}$$

This approximation is valid if the range of action

of the surface force is much smaller than the surface curvature radius.

For two spheres of radii R_1 and R_2 , this yields:

$$U(h_0) = \frac{2\pi R_1 R_2}{R_1 + R_2} \int_{h_0}^{\infty} f(h) dh$$

Derjaguin's approximation for other geometries [1-3,10]:

Two Crossed Cylinders $(a) = \frac{2\pi\sqrt{r_1r_2}}{\sin \omega} \int_{h_0}^{\infty} f(h) dh$

Molecular Theory of Surface Forces

DLVO Forces:

(1) Van der Waals force

(2) Electrostatic (double layer) force

Non-DLVO Forces:

(1) Hydration repulsion

(2) Steric interaction due to adsorbed polymer chains

(3) Oscillatory structural force and Depletion attraction

Van der Waals surface forces:

A_H – Hamaker constant

Hamaker's approach [11]

The interaction energy is pair-wise additive: Summation over all couples of molecules. Result [11, 12]:

$$A_{\rm H} = A_{12} - A_{23} - A_{31} + A_{33}$$

$$A_{ij} = \pi^2 \rho_i \rho_j \alpha_{ij}; \qquad A_{ij} \approx (A_{ii} A_{jj})^{1/2}$$

Symmetric film: phase 2 = phase 1

$$A_{\rm H} = A_{11} - 2A_{13} + A_{33} \approx \left(A_{11}^{1/2} - A_{33}^{1/2}\right)^2 > 0$$

For symmetric films: always attraction!

Lifshitz approach to the calculation of Hamaker constant

E. M. Lifshitz (1915 – 1985) [13] took into account the collective effects in condensed phases (solids, liquids). (The total energy is not pair-wise additive over al pairs of molecules.)

Lifshitz used the quantum field theory to derive <u>accurate</u> expressions in terms of [1, 14]:

(i) <u>Dielectric constants</u> of the phases: ε_1 , ε_2 and ε_3 ;

(ii) <u>Refractive indexes</u> of the phases: n_1 , n_2 and n_3 :

$$A_{\rm H} \equiv A_{132} \approx \frac{3}{4} kT \left(\frac{\varepsilon_1 - \varepsilon_3}{\varepsilon_1 + \varepsilon_3}\right) \left(\frac{\varepsilon_2 - \varepsilon_3}{\varepsilon_2 + \varepsilon_3}\right)$$

Zero-frequency term: $A_{132}^{(\nu=0)}$ orientation & induction interactions;

kT – thermal energy.

+
$$\frac{3h_{\rm P}v_{\rm e}(n_1^2 - n_3^2)(n_2^2 - n_3^2)}{16\sqrt{2}(n_1^2 + n_3^2)^{3/4}(n_2^2 + n_3^2)^{3/4}}$$

Dispersion interaction term: $A_{132}^{(\nu>0)}$
 $v_{\rm e} = 3.0 \times 10^{15}$ Hz – main electronic
absorption frequency;
 $h_{\rm P} = 6.6 \times 10^{-34}$ J.s – Planck's const.

Electrostatic (Double Layer) Surface Force

 Π_{el} = excess osmotic pressure of the ions in the midplane of a symmetric film (Langmuir, 1938) [15]:

$$\Pi_{\rm el} = kT (n_{\rm 1m} + n_{\rm 2m} - 2n_0)$$

- n_{1m} , n_{2m} concentrations of (1) counterions and (2) coions in the <u>midplane</u>.
- n_0 concentration of the ions in the <u>bulk</u> solution; ψ_m potential in the midplane.

For solution of a symmetric electrolyte: $Z_1 = -Z_2 = Z$; Z is the valence of the coions. Boltzmann equation; Φ_m – dimensionless potential in the midplane ($\Phi_m \ll 1$).

$$n_{1m} = n_0 \exp(\Phi_m); \qquad n_{2m} = n_0 \exp(-\Phi_m); \qquad \Phi_m = \frac{Ze\psi_m}{kT}$$
$$\Pi_{el} = 2n_0 kT \left[\cosh(\Phi_m) - 1\right] \approx n_0 kT \Phi_m^2 > 0 \qquad \cosh(\Phi_m) = 1 + \frac{\Phi_m^2}{2} + O(\Phi_m^4)$$

 $\Pi_{\rm el}(h) \approx n_0 k T \Phi_{\rm m}^2 \approx 64 n_0 k T \gamma^2 \exp(-\kappa h)$

Near single interface, the electric potential of the double layer is [6]:

Superposition approximation in the midplane: $\psi_m = 2\psi_1$ [6]:

In the midplane $\frac{Ze\psi_1}{4kT} << 1$

 $\tanh(x) = x + O(x^3)$

$$\gamma \equiv \tanh\left(\frac{Ze\psi_{\rm s}}{4kT}\right)$$

Derjaguin – Landau – Verwey – Overbeek (DLVO) Theory [5,6]

Disjoining pressure:
$$\Pi = \Pi_{el} + \Pi_{vw} = Be^{-\kappa h} - \frac{A_{\rm H}}{6\pi h^3}$$

Free energy per unit area of a plane-parallel film:

$$f(h) = \int_{h}^{\infty} \Pi(\tilde{h}) d\tilde{h} = \frac{B}{\kappa} e^{-\kappa h} - \frac{A_{\rm H}}{12\pi h^2}$$

Energy of interaction between two identical spherical particles (Derjaguin approximation):

$$U(h) \approx \pi R \int_{h}^{\infty} f(\tilde{h}) d\tilde{h} = \pi R \left(\frac{B}{\kappa^2} e^{-\kappa h} - \frac{A_{\rm H}}{12\pi h} \right)$$

$$B = 64n_0kT\gamma^2$$
, $\gamma \equiv \tanh\left(\frac{Ze\psi_s}{4kT}\right)$

(e-electronic charge; e = 2.71828...)

DLVO Theory: The electrostatic barrier

$$U(h) \approx \pi R \left(\frac{B}{\kappa^2} e^{-\kappa h} - \frac{A_{\rm H}}{12\pi h} \right)$$

The secondary minimum could cause coagulation only for big (1 μ m) particles. The primary minimum is the reason for coagulation in most cases.

Condition for coagulation: $U_{max} = 0$ (zero height of the barrier to coagulation)

$$U(h_{\text{max}}) = 0;$$
 $\frac{\mathrm{d}U}{\mathrm{d}h}\Big|_{h=h_{\text{max}}} = 0$

Hydration Repulsion

At $C_{el} < 10^{-4}$ M (NaCl, KNO₃, KCl, etc.), a typical DLVO maximum is observed. At $C_{el} \ge 10^{-3}$ M, a strong short-range repulsion is detected by the surface force apparatus – the hydration repulsion [1, 16].

Empirical expression [1] for the interaction free energy per unit area:

<u>Important</u>: f_{el} decreases, whereas f_{hydr} increases with the rise of electrolyte concentration!

Explanation: The hydration repulsion is due mostly to the finite size of the hydrated counterions [17].

$$f_{\rm hydr} = f_0 \exp(-h/\lambda_0)$$

$$\lambda_0 = 0.6 - 1.1 \text{ nm}$$

 $f_0 = 3 - 30 \text{ mJ/m}^2$

Steric interaction due to adsorbed polymer chains

$$\Pi_{\rm st}(h) = kT\Gamma^{3/2} \left[\left(\frac{2L_{\rm g}}{h} \right)^{9/4} - \left(\frac{h}{2L_{\rm g}} \right)^{3/4} \right]$$

for $h < 2L_{\rm g}$; $L_{\rm g} = N \left(\Gamma l^5 \right)^{1/3}$

 $L \approx L_0 \equiv l N^{1/2}$ (ideal solvent)

l – the length of a segment; N – number of segments in a chain; In a good solvent $L > L_0$, whereas in a poor solvent $L < L_0$.

L depends on adsorption of chains, Γ [1,21].

← Alexander – de Gennes theory for the case of good solvent [18,19]:

The positive and the negative terms in the brackets in the above expression correspond to osmotic repulsion and elastic attraction.

The validity of the Alexander – de Gennes theory was experimentally confirmed; see e.g. Ref. [1].

Oscillatory–Structural Surface Force

For details – see the book by Israelachvili [1]

A planar phase boundary (wall) induces ordering in the adjacent layer of a hard-sphere fluid.

The overlap of the ordered zones near two walls enhances the ordering in the gap between the two walls and gives rise to the oscillatory-structural force. Oscillatory structural forces [1,20] were observed in liquid films containing colloidal particles, e.g. latex & surfactant micelles; Nikolov et al. [21,22].

The maxima of the oscillatory force could stabilize colloidal dispersions.

The metastable states of the film correspond to the intersection points of the oscillatory curve with the horizontal line $\Pi = P_c$.

The stable branches of the oscillatory curve are those with $\partial \Pi / \partial h < 0.$

Oscillatory–Structural Surface Force Due to Colloid Particles

Theoretical curve – by means of the Trokhimchuk formulas [23]. The micelle aggregation number, N_{agg} = 70, is determined [24].

Ordering of <u>micelles</u> of the nonionic surfactant Tween 20 [24]. <u>Methods</u>: Mysels' porous plate cell and Scheludko-Exerowa capillary cell [7,8]

Basic References

- 1. J.N. Israelachvili, Intermolecular and Surface Forces, Academic Press, London, 1992.
- 2. P.A. Kralchevsky, K. Nagayama, *Particles at Fluid Interfaces and Membranes*, Elsevier, Amsterdam, 2001; Chapter 5. http://www.lcpe.uni-sofia.bg/files/publications/2001/2001-18-Book5.pdf
- P.A. Kralchevsky, K.D. Danov, N.D. Denkov. Chemical physics of colloid systems and Interfaces, Chapter 7 in *Handbook of Surface and Colloid Chemistry"*, (Third Edition; K. S. Birdi, Ed.). CRC Press, Boca Raton, 2008; pp. 197-377. http://www.lcpe.uni-sofia.bg/files/publications/2008/2008-09-PK-KD-ND-Handbook-Birdi-3rd-Edition.pdf

Additional References

- 4. B.V. Derjaguin, M.M. Kussakov, Acta Physicochim. USSR 10 (1939) 153.
- 5. B.V. Derjaguin, L.D. Landau, Theory of Stability of Highly Charged Lyophobic Sols and Adhesion of Highly Charged Particles in Solutions of Electrolytes, *Acta Physicochim. USSR* 14 (1941) 633-652.
- 6. E.J.W. Verwey, J.Th.G. Overbeek, *Theory of Stability of Lyophobic Colloids*, Elsevier, Amsterdam, 1948.
- 7. A. Scheludko, D. Exerowa, Instrument for interferometric measuring of the thickness of microscopic foam layers. *CR Acad Bulg Sci* 7 (1959) 123-131.

- 8. A. Scheludko, Thin Liquid Films, Adv. Colloid Interface Sci. 1 (1967) 391-464.
- 9. B.V. Derjaguin, Friction and Adhesion. IV. The Theory of Adhesion of Small Particles, *Kolloid Zeits*. 69 (1934) 155-164.
- 10. B.V. Derjaguin, N.V. Churaev, V.M. Muller, *Surface Forces,* Plenum Press: Consultants Bureau, New York, 1987.
- 11. H.C. Hamaker, The London Van der Waals Attraction Between Spherical Particles *Physica* 4(10) (1937) 1058-1072.
- 12. B.V. Derjaguin, *Theory of Stability of Colloids and Thin Liquid Films*, Plenum Press: Consultants Bureau, New York, 1989.
- 13. E.M. Lifshitz, The Theory of Molecular Attractive Forces between Solids, *Soviet Phys. JETP* (English Translation) 2 (1956) 73-83.
- 14. W.B. Russel, D.A. Saville, W.R. Schowalter, *Colloidal Dispersions*, Cambridge Univ. Press, Cambridge, 1989.
- 15. I. Langmuir, The Role of Attractive and Repulsive Forces in the Formation of Tactoids, Thixotropic Gels, Protein Crystals and Coacervates. *J. Chem. Phys.* 6 (1938) 873-896.
- 16. R.M. Pashley, Hydration Forces between Mica Surfaces in Electrolyte Solutions, *Adv. Colloid Interface Sci.* 16 (1982) 57-62.

- 17. V.N. Paunov, R.I. Dimova, P.A. Kralchevsky, G. Broze and A. Mehreteab. The Hydration Repulsion between Charged Surfaces as Interplay of Volume Exclusion and Dielectric Saturation Effects, *J. Colloid Interface Sci.* 182 (1996) 239-248.
- 18. S.J. Alexander, Adsorption of Chain Molecules with a Polar Head: a Scaling Description, *J. Phys. (Paris)* 38 (1977) 983-987.
- 19. P.G. de Gennes, Polymers at an Interface: a Simplified View, *Adv. Colloid Interface Sci.* 27 (1987) 189-209.
- 20. J.N. Israelachvili, R.M. Pashley, Molecular Layering of Water at Surfaces and Origin of Repulsive Hydration Forces, *Nature* 306 (1983) 249-250.
- A.D. Nikolov, D.T. Wasan, P.A. Kralchevsky, I.B. Ivanov. Ordered Structures in Thinning Micellar and Latex Foam Films. In: *Ordering and Organisation in Ionic Solutions* (N. Ise & I. Sogami, Eds.), World Scientific, Singapore, 1988, pp. 302-314.
- 22. A. D. Nikolov, D. T. Wasan, et. al. Ordered Micelle Structuring in Thin Films Formed from Anionic Surfactant Solutions, *J. Colloid Interface Sci.* 133 (1989) 1-12 & 13-22.
- 23. A. Trokhymchuk, D. Henderson, A. Nikolov, D.T. Wasan, A Simple Calculation of Structural and Depletion Forces for Fluids/Suspensions Confined in a Film, *Langmuir* 17 (2001) 4940-4947.
- 24. E.S. Basheva, P.A. Kralchevsky, K.D. Danov, K.P. Ananthapadmanabhan, A. Lips, The Colloid Structural Forces as a Tool for Particle Characterization and Control of Dispersion Stability, *Phys. Chem. Chem. Phys.* 9 (2007) 5183-5198.