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Scenarios for 
drop – drop
interactions 
in view of 
the acting 

surface forces →



Molecular Origin of Surface Tension

State 1

energy =  < 0uAA

State 2

energy = 0

The molecules 
attract each other by 
van der Waals forces: 
Interaction energy: uAA

The molecules at the surface have one neighbor less. 
Because of the formation of surface, the energy of the system increases with:
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surface tension = 
surface excess energy per unit area
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Wilhelmy plate method for 
surface tension 
measurements
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Adsorption of Surfactants

hydrophilic
headgroup

hydrophobic
tail

The surfactant 
adsorption 
lowers the 

surface tension

(1) The hydrophobic tail is brought out of water
(2) A contact of oil and water molecules is broken.

Work of 
adsorption: 2CH0ads nwwW += n – number of CH2 groups 

in a paraffin tail

kTw 1
2CH ≈ Traube rule

T – absolute temperature;    k – Boltzmann constant



Adsorption Isotherm and Gibbs Adsorption Equation

The Gibbs eq. describes the 
lowering of surface tension due 

to surfactant adsorption.
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In Region (1) dense adsorption layer is formed, Γ = const. and σ(lnc) is linear;

In Region (2) micelles are formed in the bulk, μi = const. and σ = const.
CMC = critical micelle concentration
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Models with Localized Adsorption

Frumkin Model:
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The surface is modeled as a 
lattice with full and empty 

adsorption sites.
Model appropriate for 

adsorption on a solid surface

Langmuir Model: Special case of the Frumkin model with β = 0
no interactions between the adsorbed molecules.



Models with Non-Localized Adsorption

Van der Waals Model:

)2exp(

)()(isothermAdsorption

kT
βKc

ccc
Γ

−
Γ−Γ

Γ
Γ−Γ

Γ
=

Γ=Γ⇔Γ=

∞∞

2
0

)(:stateofequationSurface

Γ+
Γ−Γ

ΓΓ
−=

Γ=

∞

∞ βkTσσ

σσ
The surface is modeled as a 
lattice with full and empty 

adsorption sites.
Model appropriate for 

adsorption on a liquid surface

Volmer Model: Special case of the van der Waals model with β = 0
no interactions between the adsorbed molecules.
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Comparison of the 
van der Waals and 
Frumkin Models

Both models fit well data for 
σ(c) for a liquid surface

(indistinguishable curves).

However, “van der Waals” gives the real
excluded area per SDS molecule, 

whereas “Frumkin” yields a greater area: 
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The van der Waals model gives realistic 
values of surface elasticity,  whereas the 

Frumkin models yields greater values. 
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Capillarity – Laplace Equation
Force-balance derivation:

For general curved interfaces - two curvature radii:
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Drop Shape Analysis (DSA) for Surface Tension Measurements
pendant drop

Laplace equation;    Rb – curvature radius at the bottom of the drop
Pc – capillary pressure
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1) The drop profile is automatically digitized;
2) Then, the data for the profile are fitted numerically by the Laplace equation

using σ and Rb as adjustable parameters.
3) The surface tension σ is obtained from the best fit; effect of surfactants on σ.
4) The method works with both drops and bubbles; both pendant and sessile profiles.
5) The method is accurate when the gravitational deformation 

(the deviation from spherical shape) is not too small.
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Surface Force & Disjoining Pressure

Surface force = Force of 
interaction between two 

bodies (two phases) when 
the distance h between their 
surfaces is relatively small.  

Typically, h < 100 nm.  

Disjoining pressure, Π(h) = 
Surface force per unit area

of a plane-parallel film [1-3].  

Capillary (Laplace) pressure: Pc = Pin – Pl = 2σ/R (σ – surface tension)

Force balance per unit area of the film surface: Pl + Π = Pin

Hence: Π = Pin – Pl = Pc (disjoining pressure = capillary pressure) [4].



DLVO Theory: Equilibrium states of a free liquid film

DLVO = Derjaguin, Landau, Verwey, Overbeek [5,6]:

Born repulsion Electrostatic component of disjoining pressure:

)(repulsion)exp()(el hBh κ−=Π

)()()( vwel hhh Π+Π=Π

Van der Waals component 
of disjoining pressure:
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(2) Secondary film

(1) Primary film

h – film thickness;   AH – Hamaker constant;

κ – Debye screening parameter



Measurements of:

(1) Film thickness vs. time; 

(2) Contact angles of TLF;

(3) Lifetime of the films.

Illustration: Stepwise thickness transitions in 
films from 0.1 M solutions of the nonionic Brij 35:

Scheludko-Exerowa capillary cell for thin-liquid-film (TLF) studies [7,8]Scheludko-Exerowa capillary cell for thin-liquid-film (TLF) studies [7,8]



Derjaguin’s Approximation (1934): The energy of interaction, U, between 
two bodies across a film of uneven 
thickness, h(x,y), is [9]:
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where f(h) is the interaction free energy 
per unit area of a plane-parallel film:
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This approximation is valid if the range of action 
of the surface force is much smaller than the surface curvature radius.

For two spheres of radii R1 and R2, this yields:
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Derjaguin’s approximation for other geometries [1-3,10]:

Sphere – Plate
Truncated Sphere 

– Plate
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Molecular Theory of Surface Forces

DLVO Forces:

(1) Van der Waals force

(2) Electrostatic (double layer) force

Non-DLVO Forces:

(1) Hydration repulsion

(2) Steric interaction due to adsorbed polymer chains

(3) Oscillatory structural force and Depletion attraction



Van der Waals surface forces:
3
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AH – Hamaker constant

Hamaker’s approach [11]

The interaction energy is pair-wise additive: 
Summation over all couples of molecules.

Result [11, 12]:
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Symmetric film: phase 2 = phase 1

For symmetric films: always attraction!
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Lifshitz approach to the calculation of Hamaker constant

E. M. Lifshitz (1915 – 1985) [13] took into account 
the collective effects in condensed phases (solids, 
liquids). (The total energy is not pair-wise additive 
over al pairs of molecules.)

Lifshitz used the quantum field theory to derive 
accurate expressions in terms of [1, 14]:

(i) Dielectric constants of the phases: ε1, ε2 and ε3 ;

(ii) Refractive indexes of the phases: n1, n2 and n3:
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orientation & induction
interactions;

kT – thermal energy.
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Electrostatic (Double Layer) Surface Force

( )0m2m1el 2nnnTk −+=Πn1m, n2m

n0

Πel = excess osmotic pressure of
the ions in the midplane of a
symmetric film (Langmuir, 1938) [15]:

n1m, n2m – concentrations of (1) counterions
and (2) coions in the midplane. 

n0 – concentration of the ions in the bulk
solution;   ψm potential in the midplane.

For solution of a symmetric electrolyte:    Z1 = −Z2 = Z;    Z is the valence of the coions.
Boltzmann equation; Φm – dimensionless potential in the midplane (Φm << 1).

kT
Zennnn m

mm0m2m0m1 );exp();exp( ψ
=ΦΦ−=Φ=

( ) )(
2

1cosh 4
m

2
m

m Φ+
Φ

+=Φ O( ) 01cosh2 2
m0m0el >Φ≈⎥

⎦

⎤
⎢
⎣

⎡
Φ=Π kTnkTn

Πel > 0   ⇒ repulsion!



Verwey – Overbeek Formula (1948)

Superposition approximation 
in the midplane: ψm = 2ψ1 [6]:

Near single interface, the electric 
potential of the double layer is [6]:
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tanh(x) ≈ 1 for x ≥ 1.5
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Derjaguin – Landau – Verwey – Overbeek (DLVO) Theory [5,6]

Disjoining pressure: 3
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DLVO Theory: The electrostatic barrier

The secondary minimum could cause 

coagulation only for big (1 μm) particles.
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coagulation in most cases.

Condition for coagulation: Umax = 0
(zero height of the barrier to coagulation)
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Hydration Repulsion

At Cel < 10−4 M (NaCl, KNO3, KCl, etc.), 

a typical DLVO maximum is observed.

At Cel ≥ 10−3 M, a strong short-range 

repulsion is detected by the surface 

force apparatus – the hydration 

repulsion [1, 16].

Empirical expression [1] for the 

interaction free energy per unit area:
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Important: fel decreases, whereas fhydr increases

with the rise of electrolyte concentration!

Explanation: The hydration repulsion is due mostly 

to the finite size of the hydrated counterions [17].



Steric interaction due to adsorbed polymer chains

l – the length of a segment;

N – number of segments in a chain;

In a good solvent L > L0, whereas 

in a poor solvent L < L0. 

L depends on adsorption of chains, Γ

[1,21]. 

← Alexander – de Gennes theory

for the case of good solvent [18,19]:
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The positive and the negative terms in the brackets in the above expression 

correspond to osmotic repulsion and elastic attraction. 

The validity of the Alexander − de Gennes theory was experimentally confirmed; 

see e.g. Ref. [1].



Oscillatory–Structural Surface Force

For details – see the book by Israelachvili [1]

A planar phase 

boundary (wall) induces 

ordering in the adjacent 

layer of a hard-sphere 

fluid.

The overlap of the 

ordered zones near two 

walls enhances the 

ordering in the gap 

between the two walls 

and gives rise to the 

oscillatory-structural 

force.



The maxima of the oscillatory 
force could stabilize 

colloidal dispersions.

The metastable states of the 
film correspond to the 

intersection points of the 
oscillatory curve with the 

horizontal line Π = Pc.

The stable branches of the 
oscillatory curve are those with 

∂Π/∂h < 0.
Depletion 
minimum

Oscillatory structural forces [1,20] were observed in liquid films containing 
colloidal particles, e.g. latex & surfactant micelles; Nikolov et al. [21,22].

Oscillatory-
structural
disjoining
pressure



Oscillatory–Structural Surface Force Due to Colloid Particles

Ordering of micelles

of the nonionic 

surfactant 

Tween 20 [24].

Methods:

Mysels’ porous plate 

cell and

Scheludko-Exerowa 

capillary cell [7,8]

Theoretical curve – by means of the Trokhimchuk formulas [23]. 

The micelle aggregation number, Nagg = 70, is determined [24].



The total energy of interaction between two particles , U(h), 

includes contributions from all surface forces: 

U(h) = Uvw(h) + Uel(h) + Uhydr(h) + Ust(h) + Uosc(h) + …

DLVO forces Non-DLVO forces

Π(h) = Πvw(h) + Πel(h) + Πhydr(h) + Πst(h) + Πosc(h) + …

Disjoining pressure (force per unit area of a plane parallel film):

Energy of interaction between two particles: )ˆ(ˆd~d)(
~

hhhRπhU
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