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Role of the interfacial rheology:
At short times

-Slows down the drainage of films
-Damps fluctuations

of area expansion/compression, by opposing stresses
of adsorption layer density, δΓ, by the Marangoni effect (motion toward lower 

surface pressure)
of film thickness

At long times
-Plastic behavior of surfaces – fracture of fragile layers and exposure of bare fluid 
interface

Motivation – Dispersion Stability

Driving force: ΔΠ
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kc ~10-20 kBT
for lipid bilayers

Surface Deformation – Curvature
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Interesting feature: At Γ1 →Γ∞ , EG →∞ (not observed – out-of-plane escape)

Dilatational Surface Elasticity – Low MW Surfactants
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With soluble surfactants, when the 
interface is expanded, the 
diffusion flux, j, brings new 
molecules to the interface. For this 
reason, the relative increase of the 
area per one adsorbed molecule, 
(δa)/a, is always smaller than the 
relative increase of the total area, 
(δA)/A.

Diffusional Exchange Model
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Lucassen & van den Tempel, Chem. Eng. Sci., 27 (1972) 1283.
Sinusoidal oscillations of a barrier in the plane of the interface –
compression/expansion

For small deformations
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Diffusional Exchange Model

Visco-elastic behavior
The elasticity and viscosity depend on frequency, ω
”Apparent” viscosity, due to the mass exchange
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From the experimentally 
measured amplitude ratio and 
the phase shift, one determines 
E’, E”.

Interpretation of the storage 
modulus, E’, and the loss 
modulus, E”, can only be made 
in terms of rheological models.

Harmonic Oscillations

0.01%Dyn.+0.1%Solv., Deformation ~6%
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Maxwell model [summation of strains]
Constitutive relation:

Oscillatory γ(t) is substituted; the equation
is solved for τ.

At high frequencies, the behavior
becomes fully elastic, with E’ =G1 .

Besides, G1 =EG .

Linear Visco – Elasticity (Maxwell)
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Presence of irreversibly adsorbed molecules (that cannot be exchanged with the 
bulk phase)
Polymers, proteins, …

Extended Maxwell model
Freer et al. (+Radke), Langmuir, 20 (2004) 10159
Saulnier et al. (+Panayotov), Langmuir, 17 (2001) 8104

Constitutive equation:

A More Complex Linear Visco-Elastic Model

τ
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Very fast deformation: 
 Elastic behavior, with elasticity = 21 GG +   

The viscosity is “apparent”: related to the exchange of molecules with the bulk. 
At fast deformation, this cannot happen. 
Slow exchange ⇔ LARGE viscosity;  1/ Gtr η=   is long 

Very slow deformation: 
 The elasticity = 2G  ; it is due only to the irreversibly adsorbed molecules. 

Full relaxation of the mass exchange (G1 is inactive); Γ of the exchangeable 
molecules has equilibrium value. 
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Symmetric motion of the barriers 
♦ Linear translation with constant speed 
The deformation rate is relatively small (to avoid 
ripples);  dtd /γ  < 0.01 s−1. 
UNI-AXIAL DEFORMATION – superposition of 
dilatation and shear. 
If shear is not important for a particular system: 
γ – the relative area expansion, 

AdAd /=γ ,  ( ) α≡=γ 0/ln AA  Dynakoll 0.01%, Solvitose 0.1%, barrier speed = 20 mm/min
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plate (made of 
chromatographic paper)

Langmuir Trough Method
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We use the model 
with two elasticities 
and one (apparent) 
viscosity

Linear viscoelasticity – Extended Maxwell Model

Abietic acid                       Levopimaric acid Cationized starch
Dynakoll VS 50 FS from Akzo Nobel ~4-4.5% trimethylammonium-groups

Solvitose BPN from AVEBE Germany

The negatively charged acids adsorb easily; to them, polymer molecules with cationic 
groups can attach

In the Langmuir trough: 

For small deformations, dtd /γ  ≈ constant. Hence, 
for the particular rheological model: 
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The experimental dependence  τ(γ)  is fitted; 
G1 , G2  and η  are determined. 
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Alternative way to analyse data:
The oscillatory strain γ(t) is inserted 
into the constitutive equation, and 
the solution for τ(t) is found in the 
form of Fourier series.

Oscillatory Stress

Dynakoll 0.01%, Solvitose 0.1%, 40oC

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

-0.10 -0.05 0.00 0.05 0.10
γ = ln(A  / A 0 )

τ 
= 
σ(
γ)
−σ

(0
)

experiment
model fit

Area change in the trough

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

time/ T

St
ra

in
, γ

 =
 ln

(A
 / 

A
0 

)

Experiment
Model function

σ(γ=0)= 23.4 dyn/cm
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It is impossible to fit the results 
with only one G and η.
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Shear Elasticity – Entangled Gel-Like Layers

Proteins,
Polymers,

…

picture size – 100 nm
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Specific conformation on the interface – irreversible adsorption
Aggregation – 2D network (≠ from phase transition – spots of condensed phase)

Shear elasticity → solid-like behavior

Rheological Behavior under Shear

Plastic behavior (Bingham)

Langmuir 18 (2002) 1238
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  In the case of pure elasticity: 

( ) ( )⎥⎦
⎤

⎢⎣
⎡ +−μ++=σΔ 2121 2

12 uuuuuK jj      j =1,2    (1) 
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Anisotropic Stress Method

Langmuir trough:
Uniaxial 
deformation =
= Superposition 
of dilatation and 
shear

The deformation is anisotropic 
⇒ for solid-like layers, the 
measured σ will depend on the 
orientationorientation of the Wilhelmy 
plate.
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Dilatational and shear elasticity of BLG layers:
after ageing for hours, or at high concentrations
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Figure 2.  Elastic stress response of the surface, as a function of the relative area de-
formation during expansion for two different orientations of the Wilhelmy plate:
collinear (squares), and perpendicular (circles). The system contains 1×10-4 wt% 
BLG and 0.15 M NaCl (at the "natural" pH, 6.2). The interface was aged overnight.

Anisotropic Stress Method
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Anisotropic Stress – Visco-Elastic Behavior
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• If the shear parameters are 
negligible, then τ11 =τ22 .
•The viscous dissipation 
leads to curvature of the plot.
• Difference between 
compression and expansion.

Anisotropic Stress – Visco-Elastic Behavior
In the Langmuir trough, we carry out deformation with constant rate 
(fixed tdd /α ). Then, 
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besides,  eq||11 σ−σ=τ  ;  eq22 σ−σ=τ ⊥  

The functions )(11 tτ , )(22 tτ  are fitted 
with the model expressions. 
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Data fit ⇒
Values of the material parameters 
K, μ, ζs , ηs
(see the Table below).

Anisotropic Stress – Visco-Elastic Behavior

We observe different types 
of rheological behavior
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Globular protein –
the ageing and the 
concentration are 
important.

Disordered protein –
absence of network.

Surface Rheological Behavior of Proteins

 TABLE 1.  Summary of results for the studied systems  

No. System Type of rheological 
behavior 

Determined 
parameters 
(expansion) 

1 
BLG 1×10-4 wt% 
+ 0.15 M NaCl 
Freshly prepared 

Dilatational elasticity only 
No shear elasticity 
No viscous dissipation 

K= 53.0 dyn/cm 
μ= 0 

2 
BLG 1×10-4 wt% 
+ 0.15 M NaCl 
Aged overnight 

Dilatational and shear 
elasticity 
No viscous dissipation 

K= 70.5 dyn/cm 
μ= 7.5 dyn/cm 

3 β-casein 0.001 wt% 
+ 1×10-5 M Tween 20

Dilatational viscoelasticity 
Negligible shear elasticity 
and viscosity 

K= 42.6 dyn/cm 
μ << K 
ζs = 127.9 dyn.s/cm 
ηs << ζs  

4 BLG 0.01 wt% 
+ 0.15 M NaCl 

Full dilatational and shear 
visco-elasticity 

K= 83.2 dyn/cm 
μ= 16.2 dyn/cm 
ζs = 1654.8 dyn.s/cm 
ηs = 113.9 dyn.s/cm 
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The layer breakdown is detected 
when the position of the particle 
starts to deviate from the predicted 
position according to the Laplace 
equation of capillarity (the curve).

The barrier rises and the tangentialtangential
force on the particle increases 
gradually, until the layer breaks.
The method is suitable for small 
stresses (starting from Zero).

Method for Measuring the Surface Yield Stress
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With increasing protein 
concentration, the layer gains more 
strength (against disruption)

 

E

After the plastic element is 
activated, the behavior is elastic.

Yield Stress of Entangled Protein Layers



Training school 2010, p. 25

Basic References

1. D.A. Edwards, H. Brenner, D.T. Wasan, Interfacial Transport Processes and 
Rheology, Butterworth-Heinemann, Boston, 1991.

2. K.D. Danov, P.A. Kralchevsky, I.B. Ivanov, Equilibrium and dynamics of surfactant 
adsorption monolayers and thin liquid films, Chapter 9 in: G. Broze (Ed.), 
Handbook of Detergents. Part. A: Properties, Marcel Dekker, 1999, pp. 303–418.

3. J.C. Slattery, Interfacial Transport Phenomena, Springer-Verlag, New York, 1990; 
Momentum, Energy, and Mass Transfer in Continua, R.E. Krieger Publishing Co., 
Huntington, New York, 1978.

4. L.E. Scriven, Dynamics of a Fluid Interface, Chem. Eng. Sci. 12 (1960) 98-108.

5. J. Hunter, Foundation of Colloid Science Vol. I, Clarendon Press, Oxford, 1987; Vol. II, 
Clarendon Press, Oxford, 1989.



Training school 2010, p. 26

Additional References

6. J.T. Davies, E.K. Rideal, Interfacial Phenomena, Academic Press, New York, 1963.

7. T.D. Gurkov, J.T. Petkov, B. Campbell, R.P. Borwankar, Dilatational and Shear 
Rheology of Protein Layers on Water/Air Interface, In: "Food Colloids, 
Fundamentals of Formulation" (E. Dickinson, R. Miller, Eds.), Royal Soc. Chem., 
Cambridge, UK, 2001, 181-190.

8. J.T. Petkov, T.D. Gurkov, B.E. Campbell, R.P. Borwankar, Dilatational and Shear 
Elasticity of Gel-Like Protein Layers on Air/Water Interface, Langmuir 16 (2000) 
3703-3711.

9. J.T. Petkov, T.D. Gurkov, B.E. Campbell, Measurement of the Yield Stress of Gellike
Protein Layers on Liquid Surfaces by Means of an Attached Particle, Langmuir 17 
(2001) 4556-4563.

10. J.T. Petkov, K.D. Danov, N.D. Denkov, R. Aust, F. Durst, Precise Method for 
Measuring the Shear Surface Viscosity of Surfactant Monolayers, Langmuir 12 
(1996) 2650-2653.

11. J. Lucassen, and M. van den Tempel, Longitudinal Waves on Visco-Elastic Surfaces, 
J. Colloid Interface Sci. 41 (1972) 491-498.



Training school 2010, p. 27

Additional References

12. R. Dimova, K. Danov, B. Pouligny, I.B. Ivanov, Drag of a Solid Particle Trapped in a 
Thin Film, or at an Interface: Influence of Surface Viscosity and Elasticity, J. 
Colloid Interface Sci. 226 (2000) 35-43.

13. K.D. Danov, R. Aust, F. Durst, U. Lange, Influence of the Surface Viscosity on the 
Hydrodynamic Resistance and Surface Diffusivity of a Large Brownian Particle, J. 
Colloid Interface Sci. 175 (1995) 36-45.

14. J.T. Petkov, N.D. Denkov, K.D. Danov, O.D. Velev, R. Aust, F. Durst, Measurement of 
the Drag Coefficient of Spherical Particles Attached to Fluid Interfaces, J. Colloid 
Interface Sci. 172 (1995) 147-154.

15. T.S. Horozov, P.A. Kralchevsky, K.D. Danov, I.B. Ivanov, Interfacial Rheology and 
Kinetics of Adsorption from Surfactant Solutions, J. Dispersion Sci. Technol. 18 
(1997) 593-607.

16. T.S. Horozov, K.D. Danov, P.A. Kralchevsky, I.B. Ivanov, R.P. Borwankar, A Local 
Approach in Interfacial Rheology: Theory and Experiment, Proceedings of the First 
World Congress on Emulsions, Vol. 2, Paris, 1993, paper 3-20-137.

17. A.M. Poskanzer, F.C. Goodrich, Surface Viscosity of Sodium Dodecyl Sulfate 
Solutions with and without Added Dodecanol, J. Phys. Chem. 79 (1975) 2122-2126.



Training school 2010, p. 28

Additional References

18. I.B. Ivanov, K.D. Danov, K.P. Ananthapadmanabhan, A. Lips, Interfacial Rheology of 
Adsorbed Layers with Surface Reaction: On the Origin of the Dilatational Surface 
Viscosity, Adv. Colloid Interface Sci. 114-115 (2005) 61-92.

19. F. Ravera, G. Loglio, V.I. Kovalchuk, Interfacial dilational rheology by oscillating 
bubble/drop methods, Curr. Opinion Colloid Interface Sci. 15 (2010) 217–228.

20. F. Boury, Tz. Ivanova, I. Panaïotov, J. E. Proust, A. Bois, and J. Richou, Dilatational 
Properties of Adsorbed Poly(D,L-lactide) and Bovine Serum Albumin Monolayers 
at the Dichloromethane/Water Interface, Langmuir 11 (1995) 1636-1644.

21. D. Langevin, F. Monroy, Interfacial rheology of polyelectrolytes and polymer 
monolayers at the air–water interface, Curr. Opinion Colloid Interface Sci. 15 (2010) 
283-293.

22. H. Brenner, L.G. Leal, Conservation and Constitutive Equations for Adsorbed 
Species Undergoing Surface Diffusion and Convection at a Fluid-Fluid Interface, J. 
Colloid Interface Sci. 88 (1982) 136.

23. R. Miller, R. Wustneck, J. Krägel, G. Kretzschmar, Dilational and Shear Rheology of 
Adsorption Layers at Liquid Interface, Colloids Surf. A 111 (1996) 75-118.

24. K.S. Yim, B. Rahaii, G.G. Fuller, Surface Rheological Transitions in Langmuir 
Monolayers of Bi-Competitive Fatty Acids, Langmuir 18 (2002) 6597-6601.


