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BackgroundBackground

Liquid-liquid biphasic systems

-Examples: emulsions, polymer blends, water-in-water
biopolymer mixtures

-In many cases system microstructure is characterized
by droplets in a continuousphase
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by droplets in a continuousphase

Applications: detergents, personal care, food products, oil recovery

Flow-induced microstructure evolution
-Processing (e.g., mixing)
-Final product properties and usage



Two main mechanisms governing microstructure dynamics under flow
-Droplet collision and coalescence

BackgroundBackground
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-Droplet deformation and breakup (this presentation)
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Drop deformation and breakup in simple shear flow

–Isolated droplets
–No interfacial agents
–Immiscible, Newtonian fluids
–Laminar flow. However, results still apply in turbulent flow when

TopicsTopics
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Effect of concentration

Non-Newtonian effects

Wall effects

eddies size is larger than droplet diameter (viscous turbulence) 
Vankova N, Tcholakova S, Denkov ND, Ivanov IB, VulchevVD, Danner Th. J Colloid Interface Sci, 312, 363 (2007)
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Parallel Band Apparatus
G. I. Taylor, Proc. R. Soc. Lond. A, 
146, 501-523 (1934)

Couette geometry
Mighri F and Huneault M A, J. 
Rheol., 45,783-797 (2001)

Parallel plates (rotational)
Levitt L, Macosko C W and Pearson S D, 
Polymer Eng. Sci., 36, 1647-1655 (1996)
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Experimental techniquesExperimental techniques
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Parallel plates (translating, high-speed)
X. Zhao and J. L. Goveas, Langmuir, 17, 3788-
3791 (2001)

Parallel plates (translating)
S. Guido and M. Villone, J. Rheology, 
42, 395-415 (1998)



2-axes motorized stage

CCD video camera

Tilting and rotary stages Moving plate

Fixed plate

Shear flow workstationShear flow workstation
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Focusing motor

2-axes motorized stage and
focusing motor controller

CD/DVD recorder

Anti-vibrating table

PC

Microscope 
translating stage



View along vorticity 
(video)

Drop shape at small deformationsDrop shape at small deformations
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Example: drop of  polydimethylsiloxane in polyisobutilene



Newtonian case - Taylor, Chaffey-Brenner, Greco
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Nondimensional numbers

ηc viscosity of continuous phase
ηd viscosity of drop phase

shear rate 
r0 drop radius at rest
σ interfacial tension

Relevant physical quantities
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Small deformation theorySmall deformation theory
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Predictions
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Drop shape is ellipsoidal up to moderate deformations
S. Guido and M. Villone, J. Rheology, 42, 395-415 (1998)
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Maffettone-Minale model

Ellipsoidal droplet described by a second 
order, positive-definite, symmetric tensor S

ΩΩΩΩ = 1/2∇v−∇vT and D = 1/2 ∇v+∇vT, 
where ∇v is the velocity gradient tensor

g(S) = 3IIIS/IIS, where IIIS and IIS are the third and the 
second scalar invariant of S (to preserve droplet volume)

Ellipsoidal modelsEllipsoidal models
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fi functions chosen to recover Taylor’s  
small deformation limits

Maffettone PL, Minale M, J Non-Newton Fluid Mech, 78, 
227–241 (1998)

Other ellipsoidal models
Wetzel ED, Tucker CL III, J Fluid Mech, 426,199–228 (2001)
Yu W, Bousmina M, Grmela M, Palierne J, Zhou C, J Rheol, 46,1381–1399 (2002)
Edwards BJ, Dressler M, Rheol Acta, 42,326–337 (2003)
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Interfacial tension measurementInterfacial tension measurement
S. Guido
University of Naples Federico II
Department of Chemical Engineering

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.1

Shear rate, s-1

Ca
rr

rr
D

MINMAX

MINMAX

1616

1619

+
+=

+
−≡

λ
λ

0.0 0.1 0.2 0.3 0.4 0.5
15

20

25

Shear rate, s-1

Ca
)1(80

)32)(1619(
4 λ

λλπϕ +
+++=



25 µµµµm

FROM DROP RETRACTION

1

2









++
+−= τλλ

λ
)1619)(32(

)1(40exp0DD
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Luciani A, Champagne M F and Utracki L A,,J. Polym. Sci. Phys. Ed., 35, 1393-1403 (1997) .
Guido S and Villone M,, J. Colloid Interface Sci., 209, 247-250 (1999).



D

0.0

0.2

0.4

0.6

0.8

1

2
3 4

5

6

R=19.5 µm
Shear rate = 0.05 s-1

λ = 0.1

1

20 micron

2

3 4

R = 20 µm
λ = 0.1
Shear rate = 0.05 s-1

Water-in-water biopolymer mixturesWater-in-water biopolymer mixtures
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Guido, S Simeone M and Alfani, A, Carbohydrate Polymers, 
48, 143-152 (2002)
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Droplet retraction after a step strainDroplet retraction after a step strain
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K, Kashihara H and Masuda T, J. Rheol., 42, 
567-580 (1998)

Assighaou S and Benyahia L, Rheol Acta, 49, 677-686 (2010)

FE flat ellipsoid, C spherocylinder, 
E prolate ellipsoid, S sphere



• Upon increasing Ca, a critical condition (Cacr) is reached where drop 
shape becomes unstable (video)

λ

Drop breakup in shear flowDrop breakup in shear flow
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λ = 1

Ca1>Cacr

λ = 1

Ca2>Ca1



λ<< 1
Drop breakup in shear flowDrop breakup in shear flow
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Tip streaming
Drop: Na-caseinate rich phase
Matrix: Na-alginate rich phase



 

Cacr

JT model
Grace data
de Bruijn data

JT model
Grace data
de Bruijn data

Drop breakup in shear flowDrop breakup in shear flow
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Grace H P, Chem. Eng. Commun., 14, 225-277 (1982)
de Bruijn R A, PhD thesis, Technische Universiteit Eindhoven (1989)
Jackson N E and Tucker III C L, J. Rheol., 47, 659-682 (2003)



Breakup of a liquid threadBreakup of a liquid thread
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Tomotika S, Proc. R. Soc. London Ser. A, 150, 322-337 (1935)
Elemans P H M, Janssen J M H and Meijer H E H, J. Rheol., 34, 1311-1325 (1990)



Viscous-capillary force balance
(inertia is negligible)
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Close to breakup, the external viscous shear 
stresses associated with thread axial motion 
become comparable to the internal viscous 
stresses associated with thread extension

Near critical behaviorNear critical behavior
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Lister J R and Stone H A, Phys Fluids, 10, 2758-27 (1998)

Blawzdziewicz J, Cristini V and Loewenberg M, Phys 
Fluids, 14, 2709-2718 (2002)
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Breakup kineticsBreakup kinetics
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daughters satellites

Cristini V, Guido S, Alfani ,   Blawzdziewicz J 
and Loewenberg M, J. Rheol., 47, 1283-1298 
(2003) t/(1+λλλλ)γγγγ
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Shape evolution for Ca/Cacr = 1.38Shape evolution for Ca/Cacr = 1.38
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Cristini V, Guido S, Alfani ,   Blawzdziewicz J and Loewenberg M, J. Rheol., 47, 1283-1298 (2003)



Daughter drop scalingDaughter drop scaling
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Daughter drop size
indipendent of initial size

scales with critical drop size



Cumulative size distribution

Drop fragment distributionDrop fragment distribution
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The distributions for each experiment 
show two distinct daughter drops and 
three size classes of satellite drops



Drop fragment distributionDrop fragment distribution
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Zhao X, J. Rheol., (2006)

λλλλ = 0.075, Ca = 4.5 Cacr



� Liquid-liquid dispersions are alwaysviscoelastic systems, due to interfacial 

tension

� Our aim is to study the effect of the intrinsic elasticityof the fluid 

components on flow-induced morphology

Non-Newtonian effectsNon-Newtonian effects
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� Model fluids: constant viscosity, highly elastic liquids (Boger fluids)

Outer phase: viscoelastic fluid , inner
phase: Newtonian, λλλλ = 1

Ca = 0.4



• Constitutive equation of component liquids: second-order fluid

either the outer or the inner 
phase is non-Newtonian 

(the other being Newtonian)
Here

2Ψ=µ γ 2&Ψr

2 additional physical quantities:
2

11N γ&Ψ=
2

22N γ&Ψ=
normal stress 
differences

Small deformation theory with elastic fluidsSmall deformation theory with elastic fluids
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• New nondimensional parameters:
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Greco F, J. Non-Newt. Fluid Mech., 107, 111-131 (2002)
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BreakupBreakup
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Outer phase: Newtonian, drop: viscoelastic, λλλλ = 2.6

Drop breakup is hindered by elasticity of the fluid components
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Shape parameters
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R0

d d >> 2R0

Wall effectsWall effects
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d d ≈ 2R0
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Sibillo V, Pasquariello G, Simeone M, Cristini V, Guido S, Phys. Rev. Lett., 97, 054502  (2006)



Comparison with theoretical predictions
(left) and numerical simulations (right)

Ca = 0.1

Wall effectsWall effects
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Simulations: Janssen P J A and Anderson P D, Phys 
Fluids, 19, 043602 (2007)

Theory: Shapira M and Haber S, Int. J. 
Multiphase Flow, 16,305 (1990)



Wall effects act to stabilize drop shape at λλλλ = 1

Wall effectsWall effects
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Wall effectsWall effects
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Van Puyvelde P, Vananroye A, Cardinaels R, Moldenaers P, Polymer, 49, 5363–5372 (2008)

Even at λ > 4 (no breakup in unbounded shear flow), 
droplets can still be broken in confined conditions



Vorticity
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Wall effects: Shear bandingWall effects: Shear banding
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Caserta S, Simeone M, and Guido S, Phys. Rev. Lett., 100, 137801 (2008)
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Shape fluctuations due to
drop interactions

Concentrated systemsConcentrated systems
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Ca = 0.15

Concentrated systemsConcentrated systems
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The time-averaged value of D depends on Ca only



Concentrated systemsConcentrated systems
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“Mean field” scaling with blend viscosity

Concentrated systemsConcentrated systems
S. Guido
University of Naples Federico II
Department of Chemical Engineering

Jansen K M B, Agterof W G M, Mellema J, J 
Rheol, 45, 227-236 (2001)
Caserta S, Reynaud S, Simeone M and  
Guido S, J Rheol, 51, 585-774 (2007) (data 
shown here)



Drop shape up to moderate deformations is essentially ellipsoidal and is well 
represented by small deformation theories and phenomenological models

Numerical simulations are in good agreement with experiments up to breakup

ConclusionsConclusions
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Single drop deformation and breakup results can be applied to concentrated 
systems by using a “mean field” scaling

Drop fragments distribution can be estimated if the original distribution is known

Open issue: effects of surfactants

Wall effects stabilize drop shape and elicit shear bandingphenomena


