Drop deformation and breakup in laminar shear flow

Stefano Guido

Dipartimento di Ingegneria chimica Università di Napoli Federico II

COST P21 Student Training School "Physics of droplets: Basic and Advanced topics" Borovets, 13 July 2010

Background

Liquid-liquid biphasic systems

-Examples: emulsions, polymer blends, water-in-water biopolymer mixtures
-In many cases system microstructure is characterized by droplets in a continuous phase

Applications: detergents, personal care, food products, oil recovery

Flow-induced microstructure evolution

-Processing (e.g., mixing)-Final product properties and usage

Background

Two main mechanisms governing microstructure dynamics under flow
 Droplet collision and coalescence

-Droplet deformation and breakup (this presentation)

Topics

Drop deformation and breakup in simple shear flow

-Isolated droplets -No interfacial agents -Immiscible, Newtonian fluids -Laminar flow. However, results still apply in turbulent flow when eddies size is larger than droplet diameter (viscous turbulence) Vankova N, Tcholakova S, Denkov ND, Ivanov IB, Vulchev VD, Danner Th. J Colloid Interface Sci, 312, 363 (2007)

- Non-Newtonian effects
- Wall effects
- Effect of concentration

Reviews

- 1) Rallison J M, "The deformation of small viscous drops and bubbles in shear flows", *Ann. Rev. Fluid Mech.*, **16**, 45-66 (1984).
- Stone H A, "Dynamics of drop deformation and breakup in viscous fluids", Ann. Rev. Fluid Mech., 26,65-102 (1994).
- 3) Tucker III C L and Moldenares P, "Microstructural evolution in polymer blends", *Ann. Rev. Fluid Mech.*, **34**, 177-210 (2002).
- 4) S. Guido and F. Greco, "Dynamics of a liquid drop in a flowing immiscible liquid", in *Rheology Reviews 2004*, Ed. D. M. Binding and K. Walters, The British Society of Rheology, Aberystwyth, pp. 99-142 (2004)
- 5) Fischer P, Erni P, "Emulsion drops in external flow fields -- The role of liquid interfaces", *Current Opinion in Colloid & Interface Science*, **12**,196-205 (2007).
- 6) Derkach, S R, "Rheology of emulsions", Adv Colloid Interface Sci, 151, 1-23 (2009)
- 7) Minale M, "Models for the deformation of a single ellipsoidal drop: a review", *Rheol Acta*, online article
- 8) Frith W J, "Mixed Biopolymer Aqueous Solutions Phase behaviour and rheology", *Adv Colloid Interface Sci*, advanced online article
- 9) Guido S and Preziosi V, Adv Colloid Interface Sci, advanced online article

Parallel Band Apparatus G. I. Taylor, *Proc. R. Soc. Lond. A*, **146**, 501-523 (1934)

Couette geometry Mighri F and Huneault M A, *J. Rheol.*, **45**, 783-797 (2001)

Parallel plates (rotational) Levitt L, Macosko C W and Pearson S D, *Polymer Eng. Sci.*, **36**, 1647-1655 (1996)

S. Guido and M. Villone, *J. Rheology*, **42**, 395-415 (1998)

Drop shape at small deformations

View along vorticity (video)

Example: drop of polydimethylsiloxane in polyisobutilene

Pr

S. Guido University of Naples Federico II Department of Chemical Engineering

Small deformation theory

Newtonian case - Taylor, Chaffey-Brenner, Greco

Relevant physical quantities

- η_c viscosity of continuous phase
- η_d viscosity of drop phase
- $\dot{\gamma}$ shear rate
- r_0 drop radius at rest
- σ interfacial tension

Nondimensional numbers

$$Ca = \frac{\eta_c r_0 \dot{\gamma}}{\sigma} \quad Capillary number \quad Can\lambda = \frac{\eta_d}{\eta_c} \quad Viscosity ratio$$

 τ_{σ}

edictions
$$\begin{cases} \frac{r_{MAX}}{r_0} = 1 + f_1(\lambda)Ca + f_2(\lambda)Ca^2 & \varphi = \frac{\pi}{4} + \frac{(19\lambda + 16)(2\lambda + 3)}{80(1 + \lambda)}Ca \\ \frac{r_{MIN}}{r_0} = 1 - f_1(\lambda)Ca + f_2(\lambda)Ca^2 & D = \frac{r_{MAX} - r_{MIN}}{r_{MAX} + r_{MIN}} = \frac{19\lambda + 16}{16\lambda + 16}Ca \end{cases}$$

G. I. Taylor, *Proc. R. Soc. Lond. A*, **146**, 501-523 (1934) Chaffey CE, Brenner H, *J Colloid Interface Sci*, **24**, 258–269 (1967) Greco F, *Phys. Fluids*, **14**, 946-954 (2002)

 $D \equiv Deformation parameter$

Ellipsoidal models

Maffettone-Minale model

$$\frac{d\mathbf{S}}{dt} - \operatorname{Ca}\left(\mathbf{\Omega} \cdot \mathbf{S} - \mathbf{S} \cdot \mathbf{\Omega}\right) = -f_1^{MM} \left[\mathbf{S} - g\left(\mathbf{S}\right)\mathbf{I}\right] + f_2^{MM} \operatorname{Ca}\left(\mathbf{D} \cdot \mathbf{S} + \mathbf{S} \cdot \mathbf{D}\right)$$

$$f_1^{\text{MM}} = \frac{40(1+\lambda)}{(3+2\lambda)(16+19\lambda)};$$

$$f_2^{\text{MM}} = \frac{5}{3+2\lambda} + \frac{3\text{Ca}^2}{2+6\text{Ca}^{2+\delta}} \frac{1}{1+\varepsilon\lambda^2},$$

 f_i functions chosen to recover Taylor's small deformation limits

Maffettone PL, Minale M, *J Non-Newton Fluid Mech*, **78**, 227–241 (1998)

Other ellipsoidal models Wetzel ED, Tucker CL III, *J Fluid Mech*, **426**,199–228 (2001) Yu W, Bousmina M, Grmela M, Palierne J, Zhou C, *J Rheol*, **46**,1381–1399 (2002) Edwards BJ, Dressler M, *Rheol Acta*, **42**,326–337 (2003)

Ellipsoidal droplet described by a second order, positive-definite, symmetric tensor **S**

 $\mathbf{\Omega} = 1/2 \ \nabla \mathbf{v} - \nabla \mathbf{v}^{\mathrm{T}}$ and $\mathbf{D} = 1/2 \ \nabla \mathbf{v} + \nabla \mathbf{v}^{\mathrm{T}}$, where $\nabla \mathbf{v}$ is the velocity gradient tensor

 $g(\mathbf{S}) = 3III_S/II_S$, where III_S and II_S are the third and the second scalar invariant of \mathbf{S} (to preserve droplet volume)

Interfacial tension measurement

FROM STEADY STATE SHAPE

Interfacial tension measurement

FROM DROP RETRACTION

$$D = D_0 \exp\left(-\frac{40(\lambda+1)}{(2\lambda+3)(19\lambda+16)}\tau\right)$$

 $\tau = t\sigma/(\eta_c R_0)$

Overall data

Method	σ (mN/m)
Steady state D, Taylor	2.54 ± 0.07
Steady state angle, Chaffey-Brenner	2.62 ± 0.07
Retraction, Rallison	2.58 ± 0.06

Luciani A, Champagne M F and Utracki L A, *J. Polym. Sci. Phys. Ed.*, **35**, 1393-1403 (1997). Guido S and Villone M, J. *Colloid Interface Sci.*, **209**, 247-250 (1999).

Water-in-water biopolymer mixtures

Cohen A and Carriere C J, *Rheol. Acta*, **28**. 223-232 (1989)

Yamane H, Takahashi M, Hayashi R, Okamoto K, Kashihara H and Masuda T, *J. Rheol.*, **42**, 567-580 (1998)

Droplet retraction after a step strain

 $\varepsilon = \ln(L/2r_0)$

FE flat ellipsoid, C spherocylinder, E prolate ellipsoid, S sphere

Assighaou S and Benyahia L, Rheol Acta, 49, 677-686 (2010)

Drop breakup in shear flow

• Upon increasing Ca, a critical condition (Ca_{cr}) is reached where drop shape becomes unstable (video)

Drop breakup in shear flow

$\lambda << 1$

Tip streaming

Drop: Na-caseinate rich phase Matrix: Na-alginate rich phase

Drop breakup in shear flow

Grace H P, *Chem. Eng. Commun.*, **14**, 225-277 (1982) de Bruijn R A, PhD thesis, Technische Universiteit Eindhoven (1989) Jackson N E and Tucker III C L, *J. Rheol.*, **47**, 659-682 (2003)

Breakup of a liquid thread

Tomotika S, **Proc. R. Soc. London Ser. A**, **150**, 322-337 (1935) Elemans P H M, Janssen J M H and Meijer H E H, *J. Rheol.*, **34**, 1311-1325 (1990)

Near critical behavior

Viscous-capillary force balance (inertia is negligible)

$$\eta \partial^2 v / \partial r^2 \approx \eta_d \partial^2 v / \partial z^2 \approx \sigma \partial r^{-1} / \partial r$$

Close to breakup, the external viscous shear stresses associated with thread axial motion become comparable to the internal viscous stresses associated with thread extension

 ζ characteristic axial length in the pinch-off region l neck radius

w characteristic velocity

$$\zeta \equiv w(t_{cr} - t) \approx (\sigma/\eta)(t_{cr} - t) \qquad \qquad \ell \approx \frac{\sigma}{\sqrt{\eta \eta_d}} (t_{cr} - t)$$

Lister J R and Stone H A, Phys Fluids, 10, 2758-27 (1998)

Blawzdziewicz J, Cristini V and Loewenberg M, *Phys Fluids*, **14**, 2709-2718 (2002)

S. Guido University of Naples Federico II

Department of Chemical Engineering

Determination of Ca_{cr}

Shape evolution for Ca/Cacr = 1.38

Cristini V, Guido S, Alfani, Blawzdziewicz J and Loewenberg M, J. Rheol., 47, 1283-1298 (2003)

Daughter drop scaling

Daughter drop size

scales with critical drop size

Drop fragment distribution

Cumulative size distribution

The distributions for each experiment show two distinct daughter drops and three size classes of satellite drops

Drop fragment distribution

dominant

Large

drops

100

(Bimodal

2Ca

Ca

3.5

 $\lambda = 0.075, Ca = 4.5 Ca_{cr}$

Non-Newtonian effects

- Liquid-liquid dispersions are *always* viscoelastic systems, due to interfacial tension
- Our aim is to study the effect of the *intrinsic elasticity* of the fluid components on flow-induced morphology
- ♦ Model fluids: constant viscosity, highly elastic liquids (Boger fluids)

Ca = **0.4**

Outer phase: viscoelastic fluid , inner phase: Newtonian, $\lambda = 1$

Small deformation theory with elastic fluids

• Constitutive equation of component liquids: second-order fluid

Greco F, J. Non-Newt. Fluid Mech., 107, 111-131 (2002)

Comparison with experiments

Outer phase: Newtonian, drop: viscoelastic, $\lambda = 2.6$

Drop breakup is hindered by elasticity of the fluid components

S. Guido University of Naples Federico II Wall effects Department of Chemical Engineering Shape parameters $\frac{L}{2R_0}$ R₀ d d $2R_0$ Nondimensional Nondimensional 50 µm major axis gap $D = D_T \left[1 + \left(\frac{2R_0}{d}\right)^3 \frac{1 + 2.5\lambda}{1 + \lambda} \right]$ Shapira M and Haber S, Int. J. L *Multiphase Flow*, **16**, 305 (1990)

Wall effects

Comparison with theoretical predictions (left) and numerical simulations (right)

Multiphase Flow, 16, 305 (1990)

Simulations: Janssen P J A and Anderson P D, Phys Fluids, 19, 043602 (2007)

Wall effects

Even at $\lambda > 4$ (no breakup in unbounded shear flow), droplets can still be broken in confined conditions

Van Puyvelde P, Vananroye A, Cardinaels R, Moldenaers P, Polymer, 49, 5363–5372 (2008)

Caserta S, Simeone M, and Guido S, Phys. Rev. Lett., 100, 137801 (2008)

S. Guido **Concentrated systems** University of Naples Federico II Department of Chemical Engineering 0.24 0.22 Shape fluctuations due to 0.20 drop interactions D 0.18 0.16 0.14 10 20 20

(5)

50

10

60

Concentrated systems

The time-averaged value of D depends on Ca only

Concentrated systems

Concentrated systems

"Mean field" scaling with blend viscosity

0.6 0.5 0.4 D 0.3 Taylor 0.2 2,5% \circ 5% 0.1 10% Single Drop Exp 0.0 0.1 0.2 0.0 0.3 0.4 0.5 0.6 Ca

Jansen K M B, Agterof W G M, Mellema J, *J Rheol*, **45**, 227-236 (2001) Caserta S, Reynaud S, Simeone M and Guido S, *J Rheol*, **51**, 585-774 (2007) (data shown here)

Conclusions

- Drop shape up to moderate deformations is essentially ellipsoidal and is well represented by small deformation theories and phenomenological models
- Numerical simulations are in good agreement with experiments up to breakup
- Drop fragments distribution can be estimated if the original distribution is known
- Single drop deformation and breakup results can be applied to concentrated systems by using a "mean field" scaling
- Wall effects stabilize drop shape and elicit shear banding phenomena
- Open issue: effects of surfactants