AGENDA
Student Training School "Physics of droplets: Basic and Advanced topics"

	Sunday 11th July	Monday 12th July	Tuesday 13th July	Wednesday 14th July
9:00-13:05	Meeting at airport and transport to site (teachers + students)	5 Lectures	5 Lectures	Eufoam, WG/MC meetings or departure
13:10-14:30		Lunch	Lunch	
14:30-16:00		2 Lectures	2 Lectures	
16:00-16:30		Break	Break	
16:30-18:30	Registration	3 Experimental demonstrations	2 Experimental demonstrations	
			Closing	
18:30-19:00		Free time	Free time	
19:00	Opening dinner			

 $\underline{12 \ Lectures}{:} \ 2 \ Morning \ sessions{:} \ 3 \ lectures \times 45' \ (40+5), \ break \ 20', \ 2 \ lectures \times 45' \ (5 \ lectures/morning \times 2 \ days)$

2 Afternoon sessions: 2 lectures × 45'

Experimental demonstrations and practice (5 groups \times 3 or 4 students; 3 + 2 demonstrations \times 40' per group):

(1) Contact angles and spreading, (2) Interfacial tension and rheology, (3) Optical methods for liquid films, (4) Emulsification, (5) Foam drainage and stability.

Tentative List of Lectures "Physics of droplets: Basic and Advanced topics"

Monday, 12 th July "Basics"	Tuesday, 13th July "Advanced Topics"	
Interfacial tension, capillarity, and surface forces (Kralchevsky)	Composite droplets and antibubbles (Vandewalle)	
Surfactants – classification, features and applications (Denkov)	Drop breakup in laminar flow (Guido)	
Dynamics of surfactant adsorption (Danov)	Drop collisions, oscillations, and breakup (Brenn)	
Interfacial rheology (Gurkov)	Superhydrophobic surfaces (Shirtcliffe)	
Emulsification (Tcholakova)	Electrowetting (van den Ende)	
Food emulsions and foams (Stoyanov)	Digital microfluidics (Kreutzer)	
Experimental methods for characterization of interfaces and thin films (Marinova)	Foam rheology: an overview from microscopic details to macroscopic response (Dennin)	

Experimental demonstrations:

- (1) Contact angles and spreading
- (2) Interfacial tension and rheology
- (3) Optical methods for liquid films
- (4) Emulsification
- (5) Foam drainage and stability