Effect of Surfactants and Hydrodynamic Factors on the Drop-Size Distribution in Membrane Emulsification

Peter A. Kralchevsky, K. D. Danov, N. C. Christov, D. N. Ganchev

Laboratory of Chemical Physics & Engineering

Faculty of Chemistry, University of Sofia, BULGARIA

Scheme of a typical membrane emulsification modulus

Tubular membrane of porous glass (Shirazu, Miyazaki, Japan)

Observation of the forming drops at the outer membrane surface

Surface of membrane with 2 μm pore size

Produced monodisperse emulsion (pore diameter 3.2 μm)

Oil-in Water Emulsions Obtained by Hydrophilic Membranes

Typically $d_{\rm drop}/d_{\rm pore} \approx 3$

 d_{drop}/d_{pore} is independent of the interfacial tension

 $d_{\rm drop}/d_{\rm pore}$ is independent of the pore size

Basic Question:

Why $d_{\rm drop}/d_{\rm pore} \approx 3$?

(irrespective of pore size, interfacial tension and viscosity of the liquid phases?)

Theoretical Analysis:

Condition for Detachment of a Growing Drop from a Pore

<u>KEY</u>:

Analogy: detachment of a pendant drop

- Steady state growth: $F_{tot} = 0$;
- At a given size the drop profile becomes <u>unstable;</u>
- The critical value of the body (gravitational) force is:

 $F_{\rm cr} = \sigma d_{\rm drop} \lambda(x);$ $x = d_{\rm drop}/d_{\rm pore}$

 $\lambda(x)$ – known universal function

 $\lambda(x) \propto (V_{max})^{2/3}$; V_{max} – dimensionless maximum drop volume [2]

In the case of membrane emulsification the deformation of drop profile is due to the hydrodynamic force (rather than to gravity)

 $f_{\rm d}$ – hydrodynamic drag coefficient;

 η – viscosity of the drop (oil) phase;

$$\mathbf{v}_{av}(\Delta P) = \frac{R_{pore}^2}{8\eta L} \left(\Delta P - \frac{2\sigma}{R_d} \right)$$
 – average velocity of oil supply

 ΔP – pressure difference between the oil and water phases.

Determination of the hydrodynamic drag coefficient f_d

 The Navier-Stokes equation is integrated numerically

 The fields of *velocity* and *pressure* are computed for the *interior* and *exterior* of an oil drop growing at the orifice of a membrane pore

Vertical velocity component (domains A and B)

Contour plot of the vertical velocity component for $\theta_c = 160^\circ$.

Distribution of the velocity field in the drop at different values of the ratio R_d/R_{pore} : a) 1.1 and b) 1.3. (No vortices!)

- For $\Delta P < \Delta P_{cr}$ emulsion drops are not released from the membrane.
- For $\Delta P > \Delta P_{cr}$ drops with two different sizes, corresponding to the points A₁ and A₂, \Rightarrow two-peak drop-size distribution;
- For $\Delta P = \Delta P_{cr}$ (point C) monodisperse drops are produced with $d_{drop}/d_{pore} \approx 3$.

This explains why if monodisperse drops are produced by means of a microporous membrane, one has $d_{drop}/d_{pore} \approx 3$, irrespective of the type of the oily and aqueous phases, of the interfacial tension, bulk viscosities, surfactant adsorption kinetics, etc.

Role of the Membrane Wettability

(b) larger dynamic contact angle α

- (a) Small dynamic contact angle α : the contact line solid-water-oil is fixed at the pore diameter: $\Rightarrow d_{drop}/d_{pore} \approx 3$.
- (b) Larger angle α facilitates contact-line expansion; the latter may span two or more pores: $d_{drop}/d_{pore} > 3$ (exclusions from the rule) [3].

Exclusions from the Rule $d_{drop}/d_{pore} \approx 3$

{Lowering of surfactant concentration} ⇒ {Slowdown of adsorption} ⇒ {Worsening of the membrane wetting by water}

Beta Lactoglobulin (BLG) and Na-Caseinate [3]

{Lower interfacial tension σ_{ow} } \Rightarrow {smaller angle α }

SUMMARY AND CONCLUSIONS

Condition for producing small and monodisperse drops:

- 1. The applied pressure difference should be slightly greater than the critical pressure: $\Delta P \approx \Delta P_{cr}$;
- 2. The dynamic contact angle α should be as small as possible $\cos \alpha = (\sigma_{so} - \sigma_{sw})/\sigma_{ow}$;
- 3. The surfactant should adsorb fast at the expanding oil-water interface.

References

- [1] T. Nakashima, M. Shimizu, M. Kukizaki (Eds.) "Membrane emulsification operational manual," 1st Edition, Dept. of Chemistry, Industrial Research Institute of Miyazaki Prefecture, Miyazaki, 1991.
- [2] Pu, B., Chen, D. "A study of the measurement of surface and interfacial tension by the maximum liquid drop volume method. I. Using a backsuction syringe technique," J. Colloid Interface Sci. 235 (2001) 265.
- [3] N. C. Christov, D. N. Ganchev, N. D. Vassileva, N. D. Denkov, K. D. Danov, and P. A. Kralchevsky, "Capillary Mechanisms in Membrane Emulsification: Oil-in-Water Emulsions Stabilized by Tween 20 and Milk Proteins", Colloids and Surfaces A (2002) in press.
- [4] K. D. Danov, D. S. Valkovska, and P. A. Kralchevsky, "Adsorption Relaxation for Nonionic Surfactants under Mixed Barrier-Diffusion and Micellization-Diffusion Control", J. Colloid Interface Sci. 251 (2002) 18–25.