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Tubular membrane of porous glass (Shirazu, Miyazaki, Japan)

Observation of the forming drops at the outer membrane surface

Surface of membrane with 2 µm pore size

   Produced monodisperse emulsion (pore diameter 3.2 �m) �



Oil-in Water Emulsions Obtained by Hydrophilic Membranes

Typically ddrop/dpore � 3

ddrop/dpore is independent of the
interfacial tension

ddrop/dpore is independent of the
pore size

�

Droplet diameter, �m
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2 wt % Tween 20
oil: hexadecane
dpore = 3.2 �m

5 mM AOT at various NaCl concentrations
hexadecane drops;  pore diameter = 1 �m

Interfacial tension oil-water,  �  (mN/m)
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5 mM AOT + 20 mM NaCl;
� = 0.44 mN/m

Mean pore diameter, dpore  (�m)
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ddrop/dpore � 3



   Basic Question:

Why ddrop/dpore � 3 ?

(irrespective of pore size, interfacial tension and
viscosity of the liquid phases?)

Theoretical Analysis:

Condition for Detachment of a
Growing Drop from a Pore

KEY:
Analogy: detachment of a pendant
drop
� Steady state growth: Ftot = 0;
� At a given size the drop profile

becomes unstable;
� The critical value of the body

(gravitational) force is:

Fcr = � ddrop �(x);          x = ddrop/dpore

�(x) � known universal function

�



�(x) � (Vmax)2/3;  Vmax – dimensionless maximum drop volume [2]

In the case of membrane emulsification the deformation of drop
profile is due to the hydrodynamic force (rather than to gravity)

At the moment of detachment:

{hydrodynamic force}  =  {critical body force}

    �                fd � Rdrop vav(�P)  =  �  ddrop �(x)

fd – hydrodynamic drag coefficient;

� – viscosity of the drop (oil) phase;

vav(�P) = ��
�

�
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�

�
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R �

�
 – average velocity of oil supply

�P – pressure difference between the oil and water phases.
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Determination of the hydrodynamic drag coefficient fd

� The Navier-Stokes equation is
integrated numerically

                     �c

� The fields of velocity and
pressure are computed for the
interior and exterior of an oil
drop growing at the orifice of a
membrane pore

Contour plot of the vertical velocity component for �c = 160�.



�c – central angle of a spherical drop

Distribution of the velocity field in the drop at different values of
the ratio Rd/Rpore:  а) 1.1  and  b) 1.3. (No vortices!)



�P = 0.02 kgf/cm2;    0.25 M SDS + 12 mM NaCl,  
Pore diameter 10.4 �m;  Oil: hexadecane

(a)                                Drop diameter, �m
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�P = 0.05 kgf/cm2;    0.25 M SDS + 12 mM NaCl,
Pore diameter 10.4 �m; Oil: hexadecane

(b)                                 Drop diameter, �m
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Point C:

�P = �Pcr

�P � �Pcr �P > �Pcr

� For �P < �Pcr emulsion drops are not released from the membrane.

� For �P > �Pcr drops with two different sizes, corresponding to the
points A1 and A2, � two-peak drop-size distribution;

� For �P = �Pcr (point C) monodisperse drops are produced with
ddrop/dpore � 3.

This explains why if monodisperse drops are produced by means of a
microporous membrane, one has ddrop/dpore � 3, irrespective of the type of
the oily and aqueous phases, of the interfacial tension, bulk viscosities,
surfactant adsorption kinetics, etc.

ddrop/dpore
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Role of the Membrane Wettability

     cos� = (�so � �sw)/�ow

(a) Small dynamic contact angle �: the contact line solid-water-oil is
fixed at the pore diameter: � ddrop/dpore � 3.

(b) Larger angle � facilitates contact-line expansion; the latter may span
two or more pores: ddrop/dpore > 3 (exclusions from the rule) [3].
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Exclusions from the Rule  ddrop/dpore � 3

{Lowering of surfactant concentration} � {Slowdown of adsorption}

� {Worsening of the membrane wetting by water}
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Emulsification in Protein Solutions

Beta Lactoglobulin (BLG)  and  Na-Caseinate  [3]

Regime
of
adsorption:

BLG:
diffusional

Na-Caseinate:
barrier [4]

{Lower interfacial tension �ow}  �  {smaller angle �}

1 �m pore diameter

Droplet diameter, �m
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SUMMARY AND CONCLUSIONS

Condition for producing small and monodisperse drops:

1. The applied pressure difference should be slightly greater
than the critical pressure:  �P � �Pcr ;

2. The dynamic contact angle � should be as small as possible
cos� = (�so � �sw)/�ow ;

3. The surfactant should adsorb fast at the expanding oil-water
interface.
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